中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 初中數學 > 題目詳情
(2012•宜昌)如圖,△ABC和△ABD都是⊙O的內接三角形,圓心O在邊AB上,邊AD分別與BC,OC交于E,F兩點,點C為
AD
的中點.
(1)求證:OF∥BD;
(2)若
FE
ED
=
1
2
,且⊙O的半徑R=6cm.
     ①求證:點F為線段OC的中點;
     ②求圖中陰影部分(弓形)的面積.
分析:(1)由垂徑定理可知OC⊥AD,由圓周角定理可知BD⊥AD,從而證明OF∥BD;
(2)①由OF∥BD可證△ECF∽△EBD,利用相似比證明BD=2CF,再證OF為△ABD的中位線,得出BD=2OF,即CF=OF,證明點F為線段OC的中點;
②根據S=S扇形AOC-S△AOC,求面積.
解答:(1)證明:∵OC為半徑,點C為弧AD的中點,
∴OC⊥AD,
∵AB為直徑,
∴∠BDA=90°,BD⊥AD,
∴∠AFO=∠D=90°,
∴OF∥BD;

(2)證明:①∵點O為AB的中點,點F為AD的中點,
∴OF=
1
2
BD,
∵FC∥BD,
∴∠FCE=∠DBE,
又∵∠FEC=∠DEB,
∴△ECF∽△EBD,
FC
BD
=
FE
ED
=
1
2
,
∴FC=
1
2
BD,
∴FC=FO,即點F為線段OC的中點,
②解:∵FC=FO,OC⊥AD,
∴AC=AO,
又∵AO=CO,
∴△AOC為等邊三角形,
∴S=
60×π×62
360
-
1
2
×
3
2
×6×6
=6π-9
3
(cm2).
答:圖中陰影部分(弓形)的面積為(6π-9
3
)cm2
點評:本題考查了相似三角形的判定與性質,等邊三角形的判定與性質,垂徑定理,圓周角定理,扇形面積的計算.關鍵是熟練掌握各知識點的聯系及互相轉化.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•宜昌)如圖,數軸上表示數-2的相反數的點是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•宜昌)如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•宜昌)如圖,將三角尺與直尺貼在一起,使三角尺的直角頂點C(∠ACB=90°)在直尺的一邊上,若∠1=
60°,則∠2的度數等于( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•宜昌)如圖,在10×6的網格中,每個小方格的邊長都是1個單位,將△ABC平移到△DEF的位置,下面正確的平移步驟是(  )

查看答案和解析>>

同步練習冊答案