已知:正方形ABCD的邊長為1,射線AE與射線BC交于點E,射線AF與射線CD交于點F,∠EAF=45°.
(1)如圖1,當點E在線段BC上時,試猜想線段EF、BE、DF有怎樣的數量關系?并證明你的猜想.![]()
(2)設BE=x,DF=y,當點E在線段BC上運動時(不包括點B、C),如圖1,求y關于x的函數解析式,并指出x的取值范圍.
(3)當點E在射線BC上運動時(不含端點B),點F在射線CD上運動.試判斷以E為圓心以BE為半徑的⊙E和以F為圓心以FD為半徑的⊙F之間的位置關系.
(4)當點E在BC延長線上時,設AE與CD交于點G,如圖2.問⊿EGF與⊿EFA能否相似,若能相似,求出BE的值,若不可能相似,請說明理由.![]()
(1)EF=BE+DF,理由見解析;(2)y=
(0<x<1);(3)⊙E與⊙F外切;(4)BE的長為1+
.
解析試題分析:(1)將△ADF繞著點A按順時針方向旋轉90°,得△ABF′,易知點F′、B、E在一直線上.證得AF′E≌△AFE.從而得到EF=F′E=BE+DF;
(2)由(1)得EF=x+y再根據CF=1-y,EC=1-x,得到(1-y)2+(1-x)2=(x+y)2.化簡即可得到y=![]()
(0<x<1).
(3)當點E在點B、C之間時,由(1)知EF=BE+DF,故此時⊙E與⊙F外切;當點E在點C時,DF=0,⊙F不存在.當點E在BC延長線上時,將△ADF繞著點A按順時針方向旋轉90°,得△ABF′,證得△AF′E≌△AFE.即可得到EF=EF′=BE-BF′=BE-FD.從而得到此時⊙E與⊙F內切.
(4)△EGF與△EFA能夠相似,只要當∠EFG=∠EAF=45°即可.這時有 CF=CE.設BE=x,DF=y,由(3)有EF=x-y.由CE2+CF2=EF2,得(x-1)2+(1+y)2=(x-y)2.化簡可得 y=
(x>1).又由 EC=FC,得x-1=1+y,即x-1=1+
,化簡得x2-2x-1=0,解之即可求得BE的長
試題解析:
(1)猜想:EF=BE+DF.理由如下:
將△ADF繞著點A按順時針方向旋轉90°,得△ABF′,易知點F′、B、E在一直線上.如圖1.
∵AF′=AF,
∠F′AE=∠1+∠3=∠2+∠3=90°-45°=45°=∠EAF,
又AE=AE,
∴△AF′E≌△AFE.
∴EF=F′E=BE+DF;
(2)由(1)得EF=x+y
又CF=1-y,EC=1-x,
∴(1-y)2+(1-x)2=(x+y)2.
化簡可得y=
(0<x<1);
(3)①當點E在點B、C之間時,由(1)知EF=BE+DF,故此時⊙E與⊙F外切;
②當點E在點C時,DF=0,⊙F不存在.
③當點E在BC延長線上時,將△ADF繞著點A按順時針方向旋轉90°,得△ABF′,圖2.
有AF′=AF,∠1=∠2,BF′=FD,
∴∠F′AF=90°.
∴∠F′AE=∠EAF=45°.
又 AE=AE,
∴△AF′E≌△AFE.
∴EF=EF′=BE-BF′=BE-FD.
∴此時⊙E與⊙F內切.
綜上所述,當點E在線段BC上時,⊙E與⊙F外切;當點E在BC延長線上時,⊙E與⊙F內切;
(4)△EGF與△EFA能夠相似,只要當∠EFG=∠EAF=45°即可.
這時有CF=CE.
設BE=x,DF=y,由(3)有EF=x-y.
由CE2+CF2=EF2,得(x-1)2+(1+y)2=(x-y)2.
化簡可得 y=
(x>1).
又由EC=FC,得x-1=1+y,即x-1=1+
,化簡得
x2-2x-1=0,解之得
x=1+
或x=1-
(不符題意,舍去).
∴所求BE的長為1+
.
考點:相似形綜合題.
科目:初中數學 來源: 題型:解答題
把兩個直角三角形如圖(1)放置,使∠ACB與∠DCE重合,AB與DE相交于點O,其中∠DCE=90°,∠BAC=45°,AB=6
cm,CE="5cm," CD=10cm.
(1)圖1中線段AO的長= cm;DO= cm![]()
圖1
(2)如圖2,把△DCE繞著點C逆時針旋轉α度(0°<α<90°)得△D1CE1,D1C與AB相交于點F,若△BCE1恰好是以BC為底邊的等腰三角形,求線段AF的長.
圖2
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
閱讀材料![]()
如圖①,△ABC與△DEF都是等腰直角三角形,ACB=∠EDF=90°,且點D在AB邊上,AB、EF的中點均為O,連結BF、CD、CO,顯然點C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.解決問題:
(1)將圖①中的Rt△DEF繞點O旋轉得到圖②,猜想此時線段BF與CD的數量關系,并證明你的結論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數量關系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出
的值(用含α的式子表示出來)
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
在△ABC中,∠CAB=90°,AD⊥BC于點D,點E為AB的中點,EC與AD交于點G,點F在BC上.![]()
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1:
,EF⊥CE,求EF:EG的值.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,點E是矩形ABCD中CD邊上一點,△BCE沿BE折疊為△BFE,點F落在AD上.![]()
(1)求證:△ABF∽△DFE
(2)若△BEF也與△ABF相似,請求出
的值 .
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在6×8的網格圖中,每個小正方形邊長均為1,點O和△ABC的頂點均為小正方形的頂點.![]()
⑴以O為位似中心,在網格圖中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比為1:2
⑵連接⑴中的AA′,求四邊形AA′C′C的周長.(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知:如圖,正方形ABCD的邊長為a,BM,DN分別平分正方形的兩個外角,且滿足 ∠MAN=45°,連結MC,NC,MN.![]()
(1)填空:與△ABM相似的三角形是△ ,BM·DN= ;(用含a的代數式表示)
(2)求∠MCN的度數;
(3)猜想線段BM,DN和MN之間的數量關系并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在等腰梯形ABCD中,DC∥AB,E是DC延長線上的點,連接AE,交BC于點F。![]()
(1)求證:△ABF∽△ECF
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的長。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com