已知拋物線
經(jīng)過(guò)點(diǎn)A(3,2),B(0,1)和點(diǎn)C
.
(1)求拋物線的解析式;
(2)如圖,若拋物線的頂點(diǎn)為P,點(diǎn)A關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)為M,過(guò)M的直線交拋物線于另一點(diǎn)N(N在對(duì)稱軸右邊),交對(duì)稱軸于F,若
,求點(diǎn)F的坐標(biāo);
(3)在(2)的條件下,在y軸上是否存在點(diǎn)G,使△BMA與△MBG相似?若存在,求點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.![]()
![]()
(1)
;
(2)
;
(3)點(diǎn)G的坐標(biāo)為(0,0)或(0,-1).
解析試題分析:(1)根據(jù)圖象可得出A、B、C三點(diǎn)的坐標(biāo),然后用待定系數(shù)法即可求出拋物線的解析式;
(2)求出M、N點(diǎn)坐標(biāo),根據(jù)
可得到N點(diǎn)坐標(biāo),根據(jù)直線MN的解析式可以求出M點(diǎn)坐標(biāo);
(3)分當(dāng)△AMB∽△MBG時(shí),當(dāng)△BMA∽△MBG時(shí),兩種情況討論即可.
試題解析:(1)由題得c=1,
∵拋物線過(guò)點(diǎn)A(3,2)和點(diǎn)C![]()
;
(2)
∴P
,
拋物線的對(duì)稱軸為直線
,
A與M關(guān)于對(duì)稱軸對(duì)稱
,
,
過(guò)點(diǎn)N作
于點(diǎn)H![]()
![]()
![]()
![]()
.
可求直線MN:y =" -" x+3
;
(3)
,
,延長(zhǎng)AM交y軸于點(diǎn)D,則D(0,2).
,
,
與
相似
點(diǎn)B與點(diǎn)M對(duì)應(yīng),點(diǎn)G只能在點(diǎn)B下方.
設(shè)![]()
當(dāng)△AMB∽△MBG時(shí),
,
當(dāng)△BMA∽△MBG時(shí),![]()
![]()
綜上所述,滿足要求的點(diǎn)G的坐標(biāo)為(0,0)或(0,-1).
考點(diǎn):二次函數(shù)綜合題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線y=x2+bx+c的頂點(diǎn)坐標(biāo)為M(0,﹣1),與x軸交于A、B兩點(diǎn).
(1)求拋物線的解析式;
(2)判斷△MAB的形狀,并說(shuō)明理由;
(3)過(guò)原點(diǎn)的任意直線(不與y軸重合)交拋物線于C、D兩點(diǎn),連接MC,MD,試判斷MC、MD是否垂直,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線
與x軸的交點(diǎn)為A、D(A在D的右側(cè)),與y軸的交點(diǎn)為C.
(1)直接寫出A、D、C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為B,在拋物線上是否存在點(diǎn)P,使得以A、B、C、P四點(diǎn)為頂點(diǎn)的四邊形為梯形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系
中,二次函數(shù)
(
)的圖象與
軸正半軸交于A點(diǎn).
(1)求證:該二次函數(shù)的圖象與x軸必有兩個(gè)交點(diǎn);
(2)設(shè)該二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)中右側(cè)的交點(diǎn)為點(diǎn)B,若∠ABO=45°,將直線AB向下平移2個(gè)單位得到直線l,求直線l的解析式;
(3)在(2)的條件下,設(shè)M(p,q)為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),當(dāng)
時(shí),點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)都在直線l的下方,求m的取值范圍.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知二次函數(shù)
(a≠0)的圖象經(jīng)過(guò)點(diǎn)A,點(diǎn)B.
(1)求二次函數(shù)的表達(dá)式;
(2)若反比例函數(shù)
(x>0)的圖象與二次函數(shù)
(a≠0)的圖象在第一象限內(nèi)交于點(diǎn)
,
落在兩個(gè)相鄰的正整數(shù)之間,請(qǐng)你直接寫出這兩個(gè)相鄰的正整數(shù);
(3)若反比例函數(shù)
(x>0,k>0)的圖象與二次函數(shù)
(a≠0)的圖象在第一象限內(nèi)交于點(diǎn)
,且
,試求實(shí)數(shù)k的取值范圍.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線
經(jīng)過(guò)A
、C(0,4)兩點(diǎn),與x軸的另一交點(diǎn)是B.
(1)求拋物線的解析式;
(2)若點(diǎn)
在第一象限的拋物線上,求點(diǎn)D關(guān)于直線BC的對(duì)稱點(diǎn)
的坐標(biāo);
(3)在(2)的條件下,過(guò)點(diǎn)D作DE⊥BC于點(diǎn)E,反比例函數(shù)
的圖象經(jīng)過(guò)點(diǎn)E,點(diǎn)
在此反比例函數(shù)圖象上,求
的值.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,直線
與拋物線y=ax2+bx-3(a≠0)交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為5.點(diǎn)P是直線AB下方的拋物線上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過(guò)點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示線段PD的長(zhǎng),并求出線段PD長(zhǎng)的最大值;
②連結(jié)PB,線段PC把△PDB分成兩個(gè)三角形,是否存在適合的m的值,使這兩個(gè)三角形的面積比為1:2.若存在,直接寫出m的值;若不存在,請(qǐng)說(shuō)明理由.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,拋物線
經(jīng)過(guò)A(-1,0),C(3,-2)兩點(diǎn),與
軸交于點(diǎn)D,與
軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若直線
(
)將四邊形ABCD面積二等分,求
的值;
(3)如圖2,過(guò)點(diǎn)E(1,1)作EF⊥
軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)P旋轉(zhuǎn)180°得△MNQ(點(diǎn)M、N、Q分別與點(diǎn)A、E、F對(duì)應(yīng)),使點(diǎn)M、N在拋物線上,求點(diǎn)N和點(diǎn)P的坐標(biāo)?![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)
與x軸交于A(1,0)、B(3,0)兩點(diǎn);二次函數(shù)
的頂點(diǎn)為P.
(1)請(qǐng)直接寫出:b=_______,c=___________;
(2)當(dāng)∠APB=90°,求實(shí)數(shù)k的值;
(3)若直線
與拋物線L2交于E,F(xiàn)兩點(diǎn),問(wèn)線段EF的長(zhǎng)度是否發(fā)生變化?如果不發(fā)生變化,請(qǐng)求出EF的長(zhǎng)度;如果發(fā)生變化,請(qǐng)說(shuō)明理由.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com