中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 初中數學 > 題目詳情
如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.
分析:(1)首先在PA和PC的延長線上分別取點M、N,使AM=AE,CN=CF,可得PN=PM,則易證四邊形EMFN是平行四邊形,則可得ME=FN,∠EMA=∠CNF,即可證得△EAM≌△FCN,則可得PA=PC;
(2)由PA=PC,EP=PF,可證得四邊形AFCE為平行四邊形,易得△PED≌△PFB,則可得四邊形ABCD為平行四邊形,則四邊形ABCD的面積=2×三角形ABD的面積
解答:(1)證明:在PA和PC的延長線上分別取點M、N,使AM=AE,CN=CF.則∠EMA=∠MEA,∠CNF=∠CFN.
∵AP+AE=CP+CF,
∴PM=PN,
∵PE=PF,
∴四邊形EMFN是平行四邊形.
∴ME=FN,∠EMA=∠CNF.
在△EAM與△FCN中,
∠MEA=∠NFC
ME=NF
EMA=∠FNC

∴△EAM≌△FCN(ASA).
∴AM=CN.
∵PM=PN,
∴PA=PC;

(2)解:∵PA=PC,EP=PF,
∴四邊形AFCE為平行四邊形.
∴AE∥CF.
在△PED與△PFB中,
∠PED=∠PFB
∠EPD=∠FPB
EP=PF

∴△PED≌△PFB(AAS).
∴DP=PB.
由(1)知PA=PC,
∴四邊形ABCD為平行四邊形.
∵BD=12,AB=15,∠DBA=45°,
∴四邊形ABCD的面積為:2×
1
2
BD•AB•sin45°=12×15×
2
2
=90
2

答:四邊形ABCD的面積是90
2
點評:此題考查了平行四邊形的判定與性質,以及全等三角形的判定與性質等知識.此題圖形比較復雜,難度適中,解題的關鍵是數形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案