分析:直接根據(jù)同角三角函數(shù)之間的基本公式:sin2x+cos2x=1以及平方公式和立方公式:x3+y3=(x+y)(x2-xy+y2)展開(kāi)整理即可得到結(jié)論.
解答:解:因?yàn)椋?span id="i2awyamu" class="MathJye">
| cos4x+sin4x+sin2xcos2x |
| sin6x+cos6x+2sin2xcos2x |
=
| (sin 2x+cos 2x) 2-2sin 2xcos 2x +sin 2xcos 2x |
| (sin 2x+cos 2x) [(sin 2x) 2-sin 2xcos 2x+(cos 2x ) 2]+ 2sin 2xcos 2x |
=
| 1-sin 2xcos 2x |
| (sin 2x) 2+(cos 2x) 2+sin 2xcos 2x |
=
| 1-sin 2xcos 2x |
| (sin 2x+cos 2x) 2-2sin 2xcos 2x+sin 2xcos 2x |
=
| 1-sin 2xcos 2x |
| 1-sin 2xcos 2x |
=1.
故選:A.
點(diǎn)評(píng):本題主要考察三角函數(shù)的化簡(jiǎn)求值.解決這類題目的關(guān)鍵在于對(duì)公式的熟練掌握以及靈活運(yùn)用.三角函數(shù)這一章的最大特點(diǎn)就是公式較多,要熟練掌握公式,并加以運(yùn)用.