中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設正數x,y滿足x+y=1,若不等式
1
x
+
a
y
≥4
對任意的x,y成立,則正實數a的取值范圍是( 。
A、a≥4B、a>1
C、a≥1D、a>4
分析:由題意知(x+y)(
1
x
+
a
y
)=a+1+(
y
x
+
ax
y
)≥a+1+2
a
=(
a
+1)2
,所以(
a
+1)2≥4
,由此可知答案.
解答:解:若不等式
1
x
+
a
y
≥4
對任意的x,y成立,只要(
1
x
+
a
y
)min
4,
因為(x+y)(
1
x
+
a
y
)=a+1+(
y
x
+
ax
y
)≥a+1+2
a
=(
a
+1)2

(
1
x
+
a
y
)min=(
a
+1)2
,
(
a
+1)2≥4

∴a≥1;
故選C.
點評:本題考查基本不等式的性質和應用,解題時要認真審題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知實數a1,a2,a3不全為零,
(i)則
a1a2+2a2a3
a
2
1
+
a
2
2
+
a
2
3
的最大值為
 

(ii)設正數x,y滿足x+y=2,令
xa1a2+ya2a3
a
2
1
+
a
2
2
+
a
2
3
的最大值為M,則M的最小值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設正數x,y滿足x+4y=40,則lgx+lgy的最大值是( 。
A、2B、10C、4D、40

查看答案和解析>>

科目:高中數學 來源:2010年廣東省高考數學沖刺預測試卷15(文科)(解析版) 題型:選擇題

設正數x,y滿足x+y=1,若不等式對任意的x,y成立,則正實數a的取值范圍是( )
A.a≥4
B.a>1
C.a≥1
D.a>4

查看答案和解析>>

科目:高中數學 來源:同步題 題型:單選題

設正數x,y滿足x+4y=40,則lgx+lgy的最大值是
[     ]
A.40
B.10
C.4
D.2

查看答案和解析>>

同步練習冊答案