中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設a∈R,函數f(x)=x3-x2-x+a.
(Ⅰ)求f(x)的單調區間;
(Ⅱ)當x∈[0,2]時,若|f(x)|≤2恒成立,求a的取值范圍.
分析:(I)求導,令f′(x)>0求出函數的增區間,令f′(x)<0求出函數的減區間;
(II)由(Ⅰ)知,f(x)在[0,2]上的單調性,求得函數的極值,和f(0)、f(1)比較大小,確定函數的最大值.
解答:解:(Ⅰ)對函數f(x)求導數,得f'(x)=3x2-2x-1
令f'(x)>0,解得x>1,或x<-
1
3

令f'(x)<0,解得-
1
3
<x<1.
所以,f(x)的單調遞增區間為(-∞,-
1
3
)
和(1,+∞);
f(x)的單調遞減區間為(-
1
3
,1)
(Ⅱ)由(Ⅰ)知,f(x)在(0,1)上單調遞減,在(1,2)上單調遞增,
所以,f(x)在[0,2]上的最小值為f(1)=-1+a
由f(0)=a,f(2)=2+a,知f(0)<f(2)
所以,f(x)在[0,2]上的最大值為f(2)=2+a
因為,當x∈[0,2]時,|f(x)|≤2?-2≤f(x)≤2?
-1+a≥-2
2+a≤2

解得-1≤a≤0,
即a的取值范圍是[-1,0].
點評:考查利用導數研究函數的單調性和函數的最值問題,(Ⅱ)的解答體現 了轉化的思想方法,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設a∈R,函數f(x)=ax3-3x2
(1)若x=2是函數y=f(x)的極值點,求實數a的值;
(2)若函數g(x)=exf(x)在[0,2]上是單調減函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

17、設a∈R,函數f(x)=2x3+(6-3a)x2-12ax+2.
(Ⅰ)若a=1,求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)求函數f(x)在[-2,2]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設a∈R,函數f(x)=ax3-3x2,x=2是函數y=f(x)的極值點.
(1)求a的值;
(2)求函數f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

設a∈R,函數f(x)=x3+ax2+(a-3)x的導函數是f′(x),若f′(x)是偶函數,則以下結論正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設a∈R,函數f(x)=ex-ae-x的導函數為f′(x),且f′(x)是奇函數,則a=(  )
A、0B、1C、2D、-1

查看答案和解析>>

同步練習冊答案