如圖,四棱錐
的底面
為矩形,且
,
,
,(Ⅰ)平面
與平面
是否垂直?并說明理由;(Ⅱ)求直線
與平面
所成角的正弦值. ![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),![]()
![]()
(I)求證:
平面BCD;
(II)求異面直線AB與CD所成角的余弦值;
(III)求點(diǎn)E到平面ACD的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.![]()
(Ⅰ)求證:AD⊥平面SBC;
(Ⅱ)試在SB上找一點(diǎn)E,使得平面ABS⊥平面ADE,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐V-ABCD中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD.![]()
(Ⅰ)證明AB⊥平面VAD;
(Ⅱ)求面VAD與面VDB所成二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖所示,正方形
和矩形
所在平面相互垂直,
是
的中點(diǎn).
(1)求證:
;
(2)若直線
與平面
成45o角,求異面直線
與
所成角的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)四棱錐
的底面是正方形,
,點(diǎn)E在棱PB上.若AB=
,![]()
(Ⅰ)求證:平面
;
(Ⅱ)若E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE
,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,
使平面AEFD⊥平面EBCF (如圖).
(1)當(dāng)
時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為
,求
的最大值;
(3)當(dāng)
取得最大值時(shí),求二面角D-BF-C的余弦值.![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點(diǎn),設(shè)Q是CC1上的中點(diǎn),求證:平面D1BQ∥平面PAO.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=
AD=1,CD=
.![]()
(Ⅰ)求證:平面PQB⊥平面PAD;
(Ⅱ)設(shè)PM="t" MC,若二面角M-BQ-C的平面角的大小為30°,試確定t的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com