求滿足下列條件的橢圓方程長軸在

軸上,長軸長等于12,離心率等于

;橢圓經(jīng)過點

;橢圓的一個焦點到長軸兩端點的距離分別為10和4.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:

的左、右焦點分別為F
1、F
2,上頂點為A,△AF
1F
2為正三角形,且以線段F
1F
2為直徑的圓與直線

相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點P為焦點F
1關于直線

的對稱點,動點M滿足

. 問是否存在一個定點T,使得動點M到定點T的距離為定值?若存在,求出定點T的坐標及此定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓

:

的離心率為

,

分別為橢圓

的左、右焦點,若橢圓

的焦距為2.
⑴求橢圓

的方程;
⑵設

為橢圓上任意一點,以

為圓心,

為半徑作圓

,當圓

與橢圓的右準線

有公共點時,求△

面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
中心在坐標原點,焦點在

軸上的橢圓的離心率為

,且經(jīng)過點

。若分別過橢圓的左右焦點

、

的動直線

、

相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率

、

、

、

滿足

.

(1)求橢圓的方程;
(2)是否存在定點M、N,使得

為定值.若存在,求出M、N點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓

的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知點

是橢圓

上一點,

為橢圓的一個焦點,且

軸,

焦距,則橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓

過點

,且離心率e=

.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線

與橢圓交于不同的兩點

、

,且線段

的垂直平分線過定點

,求

的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓

的離心率為( )
查看答案和解析>>