中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設平面向量a=(x,y),b=(x2,y2),c=(1,-1),d=(,-),若a·c=b·d=1,則這樣的向量a的個數是(    )

A.0                    B.1                     C.2                    D.4

答案:A

【解析】由已知條件可得a·c=x-y=1;b·d=1.∴,由直線x-y=1與雙曲線=1無交點可得此方程組無解,即得向量a的個數為0.故應選A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設平面向量
a
=(cosx,sinx),
b
=(cosx+2
3
,sinx)
c
=(sinα,cosα)
,x∈R,
(Ⅰ)若
a
c
,求cos(2x+2α)的值;
(Ⅱ)若x∈(0,
π
2
)
,證明
a
b
不可能平行;
(Ⅲ)若α=0,求函數f(x)=
a
•(
b
-2
c
)
的最大值,并求出相應的x值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設平面向量
a
=(coxx,sinx)
b
=(
3
2
1
2
)
,函數f(x)=
a
b
+1
.求:
①求函數f(x)的值域;
②求函數f(x)的單調增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

設平面向量
a
=(cosx,sinx),
b
=(cosx+2
3
,sinx),x∈R,
(1)若x∈(0,
π
2
),證明:
a
b
不可能平行;
(2)若
c
=(0,1),求函數f(x)=
a
•(
b
-2
c
)的最大值,并求出相應的x值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2014•瀘州一模)設平面向量
a
=(
3
sinx,2cosx),
b
=(2sin(
π
2
-x),cosx),已知f(x)=
a
b
+m在[0,
π
2
]
上的最大值為6.
(Ⅰ)求實數m的值;
(Ⅱ)若f(
π
2
+x0)=
14
5
x0∈[
π
4
π
2
]
.求cos2x0的值.

查看答案和解析>>

同步練習冊答案