中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(13分)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.
(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點,求CP+PB1的最小值.
(1) ;
(2) ;(3) 的最小值為 
本試題主要是考查了立體幾何中二面角的求解和棱臺體積公式的運用,以及線段和的最值問題的綜合運用。
(1)首先要求解三棱臺的體積,關鍵是高度和底面積,然后結合公式得到。
(2)建立適當的空間直角坐標系,表示出點的坐標和向量的坐標,進而求解二面角的平面角的問題。
(3)結合三角形的知識,求解兩邊的和的最小值,要借助于余弦定理得到。
解:(1)由題意,正三棱臺高為……..2分
………..4分
(2)設分別是上下底面的中心,中點,中點.
如圖,建立空間直角坐標系.

設平面的一個法向量,則
,取平面的一個法向
,設所求角為
……..8分
(3)將梯形旋轉到,使其與成平角

,由余弦定理得
的最小值為 ……..13分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)如圖5,已知直角梯形所在的平面垂直于平面

.  
(1)在直線上是否存在一點,使得
平面?請證明你的結論;
(2)求平面與平面所成的銳二面角的余弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示, 四棱錐PABCD的底面是邊長為1的正方形,PA^CDPA = 1, PD=,EPD上一點,PE = 2ED

(Ⅰ)求證:PA^平面ABCD
(Ⅱ)求二面角D-ACE的余弦值;
(Ⅲ)在側棱PC上是否存在一點F,使得BF // 平面AEC?若存在,指出F點的位置,并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱椎P-ABCD中,底面ABCD是邊長為的正方形,且PD=,PA=PC=.

(1)求證:直線PD⊥面ABCD;
(2)求二面角A-PB-D的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如右圖,簡單組合體ABCDPE,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)若N為線段PB的中點,求證:EN⊥平面PDB;
(2)若,求平面PBE與平面ABCD所成的銳二面角的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示的七面體是由三棱臺ABC – A1B1C1和四棱錐D- AA1C1C對接而成,四邊形ABCD是邊長為2的正方形,BB1⊥平面ABCD,BB1=2A1B1=2.

(I)求證:平面AA1C1C1⊥平面BB1D;
(Ⅱ)求二面角A –A1D—C1的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

的直徑,點上的動點(點不與重合),過動點的直線垂直于所在的平面,分別是的中點,則下列結論錯誤的是  
A.直線平面B.直線平面
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知直線a∥平面α,直線b在平面α內,則a與b的位置關系為                          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(滿分10分)如圖4,在長方體中,,點在棱上移動,問等于何值時,二面角的大小為

查看答案和解析>>

同步練習冊答案