(本題滿分13分)已知橢圓
的左焦點
的坐標為
,
是它的右焦點,點
是橢圓
上一點,
的周長等于
.
(1)求橢圓
的方程;
(2)過定點
作直線
與橢圓
交于不同的兩點
,且
(其中
為坐標原點),求直線
的方程.
科目:高中數學 來源: 題型:解答題
(本題滿分14分)
如圖,已知橢圓
=1(a>b>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.![]()
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若
=2
,
·
=
,求橢圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓C:
(a>b>0)的右焦點為F
(1,0),離心率為
,P為左頂點。
(1)求橢圓C的方程;
(2)設過點F
的直線交橢圓C于A,B兩點,若△PAB的面積為
,求直線AB的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系
中,以O為極點,
軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為
,曲線
的參數方程為
,(
為參數,
)。
(Ⅰ)求C1的直角坐標方程;
(Ⅱ)當C1與C2有兩個公共點時,求實數
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓M的中心為坐標原點,且焦點在x軸上,若M的一個頂點恰好是拋物線
的焦點,M的離心率
,過M的右焦點F作不與坐標軸垂直的直線
,交M于A,B兩點。
(1)求橢圓M的標準方程;
(2)設點N(t,0)是一個動點,且
,求實數t的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(14分)如圖,已知拋物線C1: y=x2, 與圓C2: x2+(y+1)2="1," 過y軸上一點A(0, a)(a>0)作圓C2的切線AD,切點為D(x0, y0).![]()
(1)證明:(a+1)(y0+1)=1
(2)若切線AD交拋物線C1于E,且E為AD的中點,求點A縱坐標a.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com