中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
如圖所示,已知P(4,0)是圓x2+y2=36內的一點,A,B是圓上兩動點,且滿足∠APB=90°, 求矩形APBQ的頂點Q的軌跡方程。
解:設AB的中點為R,坐標為(x,y),
則在Rt△ABP中,|AR|=|PR|
又因為R是弦AB的中點,依垂徑定理:在Rt△OAR 中,|AR|2=|AO|2-|OR|2=36-(x2+y2

所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0
因此點R在一個圓上,而當R在此圓上運動時,Q點即在所求的軌跡上運動
設Q(x,y),R(x1,y1),
因為R是PQ的中點,
所以
代人方程x2+y2-4x-10=0

整理得x2+y2=56,這就是所求的軌跡方程。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖所示,已知P(4,0)是圓x2+y2=36內的一點,A,B是圓上兩動點,且滿足∠APB=90°,求AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,已知P(4,0)是圓x2+y2=36內的一點,A、B是圓上兩動點,且滿足∠APB=90°,求矩形APBQ的頂點Q的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,已知P(4,0)是圓x2+y2=36內的一點,A、B是圓上兩動點,

且滿足∠APB=90°,求矩形APBQ的頂點Q的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:2010年廣東省廣州一中高三數學二輪復習:圓錐曲線(解析版) 題型:解答題

如圖所示,已知P(4,0)是圓x2+y2=36內的一點,A、B是圓上兩動點,且滿足∠APB=90°,求矩形APBQ的頂點Q的軌跡方程.

查看答案和解析>>

同步練習冊答案