設(shè)A,B分別是直線y=
x和y=-
x上的動點,且|AB|=
,設(shè)O為坐標(biāo)原點,動點P滿足
=
+
.
(1)求點P的軌跡方程;
(2)過點(
,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點P的軌跡的相交弦分別為CD,EF,設(shè)CD,EF的弦中點分別為M,N,求證:直線MN恒過一個定點.
科目:高中數(shù)學(xué) 來源: 題型:解答題
P為圓A:
上的動點,點
.線段PB的垂直平分線與半徑PA相交于點M,記點M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當(dāng)點P在第一象限,且
時,求點M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C的頂點為O(0,0),焦點為F(0,1).![]()
(1)求拋物線C的方程;
(2)過點F作直線交拋物線C于A,B兩點,若直線AO,BO分別交直線l:y=x-2于M,N兩點,求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)過點A(1,-2).
(1)求拋物線C的方程,并求其準(zhǔn)線方程.
(2)是否存在平行于OA(O為坐標(biāo)原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于
?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓M:
=1(a>b>0)的短半軸長b=1,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形的周長為6+4
.
(1)求橢圓M的方程;
(2)設(shè)直線l:x=my+t與橢圓M交于A,B兩點,若以AB為直徑的圓經(jīng)過橢圓的右頂點C,求t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心為坐標(biāo)原點,短軸長為2,一條準(zhǔn)線的方程為l:x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)O為坐標(biāo)原點,F是橢圓的右焦點,點M是直線l上的動點,過點F作OM的垂線與以O(shè)M為直徑的圓交于點N,求證:線段ON的長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:![]()
的離心率
,原點到過點
,
的直線的距離是
.
(1)求橢圓
的方程;
(2)若橢圓
上一動點![]()
關(guān)于直線
的對稱點為
,求
的取值范圍;
(3)如果直線
交橢圓
于不同的兩點
,
,且
,
都在以
為圓心的圓上,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點的雙曲線C的一個焦點是F1(一3,0),一條漸近線的方程是![]()
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線
與雙曲線C相交于兩個不同的點M, N,且線段MN的
垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為
,求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
為橢圓
,
的左右焦點,
是坐標(biāo)原點,過
作垂直于
軸的直線
交橢圓于
,設(shè)
.
(1)證明:
成等比數(shù)列;
(2)若
的坐標(biāo)為
,求橢圓
的方程;
(3)在(2)的橢圓中,過
的直線
與橢圓
交于
、
兩點,若
,求直線
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com