中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(9分)設x>0,y>0且x+y=1,求證:≥9.

 

【答案】

均值不等式的運用,利用一正二定三相等來求解最值。

【解析】

試題分析:證明:證法一(綜合法):(2+2+3+2=9)

左邊.

證法二(分析法):要證≥9成立,         1分

因為x>0,y>0,且x+y=1,所以y=1-x>0.          1分

只需證明≥9,          1分

即證(1+x)(2-x)≥9x(1-x),           2分

即證2+x-x2≥9x-9x2,即證4x2-4x+1≥0.         1分

即證(2x-1)2≥0,此式顯然成立,             2分

所以原不等式成立.                 1分

考點:均值不等式

點評:主要是根據一正二定三相等的思想來求解最值,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數學 來源:2011-2012學年山東省高三下學期模擬預測文科數學試卷(解析版) 題型:解答題

設函數f(x)=lnx,gx)=ax+,函數f(x)的圖像與x軸的交點也在函數g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學?啤>W]

(Ⅰ)求a、b的值; 

(Ⅱ)設x>0,試比較f(x)與g(x)的大小.[來源:學,科,網Z,X,X,K]

【解析】第一問解:因為f(x)=lnx,gx)=ax+

則其導數為

由題意得,

第二問,由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數,而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

解:因為f(x)=lnxgx)=ax+

則其導數為

由題意得,

(11)由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數,而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

 

查看答案和解析>>

同步練習冊答案