中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設P是橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
上的點,F1,F2是其焦點,若|PO|是|PF1|、|PF2|的等差中項,則P點的個數是 (  )
分析:由|PO|是|PF1|、|PF2|的等差中項得,|PO|=a,再利用橢圓的定義可求.
解答:解:由|PO|是|PF1|、|PF2|的等差中項得,|PO|=a,當且僅當P為橢圓左右頂點時,結論成立,
故選C
點評:本題主要考查橢圓的定義,考查橢圓的幾何性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩焦點F1、F2和短軸的兩端點B1、B2正好是一正方形的四個頂點,且焦點到橢圓上一點的最近距離為
2
-1

(1)求橢圓的標準方程;
(2)設P是橢圓上任一點,MN是圓C:x2+(y-2)2=1的任一條直徑,求
PM
PN
的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,設F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,直線l為左準線,直線l與x軸交于P點,MN為橢圓的長軸,已知
PM
=2
MF
,且|
MN
|=8

(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點P作直線與橢圓交于A、B兩點,求△ABF面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設P是橢圓
x2a2
+y2=1   (a>1)
短軸的一個端點,Q為橢圓上一個動點,求|PQ|的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設P是橢圓
x2
a2
+y2=1   (a>1)
短軸的一個端點,Q為橢圓上一個動點,求|PQ|的最大值.

查看答案和解析>>

同步練習冊答案