中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=cos(2x-
π3
)+sin2x-cos2x

(Ⅰ)求函數f(x)的最小正周期及圖象的對稱軸方程;
(Ⅱ)設函數g(x)=[f(x)]2+f(x),求g(x)的值域.
分析:(Ⅰ)先根據兩角和與差的正余弦公式進行化簡,根據T=
w
可求得最小正周期,再由正弦函數的對稱性可求得對稱軸方程.
(Ⅱ)將f(x)的解析式代入到函數g(x)中,將sin(2x-
π
6
)
作為一個整體將函數g(x)化簡為二次函數的形式,結合正弦函數的值域和二次函數的最值的求法可求得函數g(x)的值域.
解答:解:(Ⅰ)f(x)=
1
2
cos2x+
3
2
sin2x+sin2x-cos2x

=
1
2
cos2x+
3
2
sin2x-cos2x

=sin(2x-
π
6
)

∴周期T=
2
=π,
2x-
π
6
=kπ+
π
2
(k∈Z),得x=
2
+
π
3
(k∈Z)

∴函數圖象的對稱軸方程為x=
2
+
π
3
(k∈Z)

(Ⅱ)g(x)=[f(x)]2+f(x)
=sin2(2x-
π
6
)+sin(2x-
π
6
)

=[sin(2x-
π
6
)+
1
2
]2-
1
4

sin(2x-
π
6
)=-
1
2
時,g(x)取得最小值-
1
4

sin(2x-
π
6
)=1
時,g(x)取得最大值2,
所以g(x)的值域為[-
1
4
, 2]
點評:本題主要考查兩角和與差的正余弦公式的應用和正弦函數的基本性質--最小正周期、對稱性和值域.三角函數和二次函數的綜合題是經常遇到的題型,這里要尤其注意正弦函數的值域.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函數f(x)的最小值和最小正周期;
(2)設△ABC的內角A、B、C、的對邊分別為a、b、c,且c=
3
,f(C)=0,若向量
m
=(1, sinA)
與向量
n
=(2,sinB)
共線,求a,b.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•松江區二模)已知函數f(x)=
1,x>0
0,x=0
-1,x<0
,設F(x)=x2•f(x),則F(x)是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
(
1
2
)x-1,x≤0
ln(x+1),x>0
,若|f(x)|≥ax,則實數a的取值范圍為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
(c-1)2x,(x≥1)
(4-c)x+3,(x<1)
的單調遞增區間為(-∞,+∞),則實數c的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定義域R上單調,則實數a的取值范圍為(  )

查看答案和解析>>

同步練習冊答案