求以橢圓
的焦點為焦點,且過
點的雙曲線的標準方程.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓
的離心率為
,且經(jīng)過點
. 過它的兩個焦點
,
分別作直線
與
,
交橢圓于A、B兩點,
交橢圓于C、D兩點,且
.![]()
(1)求橢圓的標準方程;
(2)求四邊形
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(1)已知點
和
,過點
的直線
與過點
的直線
相交于點
,設直線
的斜率為
,直線
的斜率為
,如果
,求點
的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在
中,
的外角平分線
與邊
的延長線相交于點
,則
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,已知點
,點
在直線
:
上運動,過點
與
垂直的直線和線段
的垂直平分線相交于點
.
(1)求動點
的軌跡
的方程;
(2)過(1)中的軌跡
上的定點![]()
作兩條直線分別與軌跡
相交于
,
兩點.試探究:當直線
,
的斜率存在且傾斜角互補時,直線
的斜率是否為定值?若是,求出這個定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓![]()
的左、右焦點分別為
、
,橢圓上的點
滿足
,且
的面積
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)是否存在直線
,使
與橢圓
交于不同的兩點
、
,且線段
恰被直線
平分?若存在,求出
的斜率取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,已知橢圓
的兩個焦點分別為
、
,且
到直線
的距離等于橢圓的短軸長.![]()
(Ⅰ) 求橢圓
的方程;
(Ⅱ) 若圓
的圓心為
(
),且經(jīng)過
、
,
是橢圓
上的動點且在圓
外,過
作圓
的切線,切點為
,當
的最大值為
時,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點
,
,直線AG,BG相交于點G,且它們的斜率之積是
.
(Ⅰ)求點G的軌跡
的方程;
(Ⅱ)圓
上有一個動點P,且P在x軸的上方,點
,直線PA交(Ⅰ)中的軌跡
于D,連接PB,CD.設直線PB,CD的斜率存在且分別為
,
,若
,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com