(本小題10分)選修4—4:坐標系與參數方程設橢圓
的普通方程為![]()
(1)設
為參數,求橢圓
的參數方程;
(2)點
是橢圓
上的動點,求
的取值范圍.
科目:高中數學 來源: 題型:解答題
(12分)在平面直角坐標系
O
中,直線
與拋物線
=2
相交于A、B兩點.
(Ⅰ)求證:命題“如果直線
過點T(3,0),那么
=3”是真命題;
(Ⅱ)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,橢圓
為![]()
(1)若一直線與橢圓
交于兩不同點
,且線段
恰以點
為中點,求直線
的方程;
(2)若過點
的直線
(非
軸)與橢圓
相交于兩個不同點
試問在
軸上是否存在定點
,使
恒為定值
?若存在,求出點
的坐標及實數
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
直線
與橢圓
交于
,
兩點,已知![]()
,![]()
,若
且橢圓的離心率
,又橢圓經過點
,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
過橢圓的焦點
(
為半焦距),求直線
的斜率
的值;
(Ⅲ)試問:
的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某公園內有一橢圓形景觀水池,經測量知,橢圓長軸長為20米,短軸長為16米,現以橢圓長軸所在直線為
軸,短軸所在直線為
軸,建立平面直角坐標系,如圖所示:![]()
(1)為增加景觀效果,擬在水池內選定兩點安裝水霧噴射口,要求橢圓上各點到這兩點距離之和都相等,請指出水霧噴射口的位置(用坐標表示),并求橢圓的方程。
(2)為了增加水池的觀賞性,擬劃出一個以橢圓的長軸頂點A、短軸頂點B及橢圓上某點M構成的三角形區域進行夜景燈光布置,請確定點M的位置,使此三角形區域面積最大。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
,點
關于
軸的對稱點為
,直線
過點
交拋物線于
兩點.
(1)證明:直線
的斜率互為相反數;
(2)求
面積的最小值;
(3)當點
的坐標為
,
且
.根據(1)(2)推測并回答下列問題(不必說明理由):①直線
的斜率是否互為相反數? ②
面積的最小值是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,曲線C1是以原點O為中心,F1、F2為焦點的橢圓的一部分,曲線C2是以原點O為頂點,F2為焦點的拋物線的一部分,
是曲線C1和C2的交點.
(Ⅰ)求曲線C1和C2所在的橢圓和拋物線的方程;
(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點,若G為CD中點,H為BE中點,問
是否為定值,若是,求出定值;若不是,請說明理由.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,曲線
是以原點O為中心、
為焦點的橢圓的一部分,曲線
是以O為頂點、
為焦點的拋物線的一部分,A是曲線
和
的交點
且
為鈍角. ![]()
(1)求曲線
和
的方程;
(2)過
作一條與
軸不垂直的直線,分別與曲線
依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問
是否為定值?若是求出定值;若不是說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com