中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知向量
a
=(2sinx,
3
cosx),
b
=(sinx,2sinx),函數f(x)=
a
b

(1)求f(x)的單調遞增區間;
(2)求函數f(x)在區間[0,
π
2
]上的值域.
分析:(1)由數量積的定義和三角函數的運算可得f(x)=1+2sin(2x-
π
6
),由2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,可得單調遞增區間;
(2)由x的范圍,可得2x-
π
6
的范圍,進而可得sin(2x-
π
6
)的范圍,可得函數的值域.
解答:解:(1)由題意可得f(x)=
a
b
=2sinx•sinx+
3
cosx•2sinx
=2sin2x+2
3
sinxcosx=1-cos2x+
3
sin2x
=1+2sin(2x-
π
6
),
由2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,可得kπ-
π
6
≤x≤kπ+
π
3

∴f(x)的單調遞增區間為:[kπ-
π
6
,kπ+
π
3
],k∈Z
(2)由(1)知f(x)=1+2sin(2x-
π
6
),
∵x∈[0,
π
2
],
∴2x-
π
6
∈[-
π
6
6
],
∴sin(2x-
π
6
)∈[-
1
2
,1],
∴f(x)=1+2sin(2x-
π
6
)∈[0,3]
故函數f(x)在區間[0,
π
2
]上的值域為:[0,3]
點評:本題考查平面向量的數量積,涉及三角函數的運算和正弦函數的單調性.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(2sinx,cosx),
b
=(
3
cosx,2cosx),定義函數f(x)=
a
b
-1.
(1)求函數f(x)的最小正周期及對稱中心;
(2)當x∈[-
12
12
]時,求函數f(x)的單調增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(2sinx,
3
cosx),
b
=(sinx,2sinx),函數f(x)=
a
b

(Ⅰ)求f(x)的單調遞增區間;
(Ⅱ)若不等式f(x)≥m對x∈[0,
π
2
]都成立,求實數m的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(2sinx,cosx),
b
=(cosx,2cosx),函數f(x)=
a
b

(1)求函數f(x)的最小正周期和最大值;
(2)求函數f(x)在區間[
π
4
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2005•東城區一模)已知向量
a
=(2sinx,cosx),
b
=(
3
cosx
,2cosx),定義函數f(x)=
a
b
-1.求:
(Ⅰ)函數f(x)的最小正周期;
(Ⅱ)函數f(x)的單調減區間.

查看答案和解析>>

同步練習冊答案