設函數
;
(Ⅰ)求證:函數
在
上單調遞增;
(Ⅱ)設
,若直線PQ∥x軸,求P,Q兩點間的最短距離.
科目:高中數學 來源: 題型:解答題
已知函數
,其中
.
(1)當
時,求函數
在
處的切線方程;
(2)若函數
在區間(1,2)上不是單調函數,試求
的取值范圍;
(3)已知
,如果存在
,使得函數![]()
在
處取得最小值,試求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數
.
(Ⅰ)若
在x=
處的切線與直線4x+y=0平行,求a的值;
(Ⅱ)討論函數
的單調區間;
(Ⅲ)若函數
的圖象與x軸交于A,B兩點,線段AB中點的橫坐標為
,證明
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,現要在邊長為
的正方形
內建一個交通“環島”.正方形的四個頂點為圓心在四個角分別建半徑為
(
不小于
)的扇形花壇,以正方形的中心為圓心建一個半徑為
的圓形草地.為了保證道路暢通,島口寬不小于
,繞島行駛的路寬均不小于
.![]()
(1)求
的取值范圍;(運算中
取
)
(2)若中間草地的造價為
元
,四個花壇的造價為
元
,其余區域的造價為
元
,當
取何值時,可使“環島”的整體造價最低?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com