解:(1)、由幾何性質知的取值范圍為:≤e<1………………3分
(2)、(i) 當離心率e取最小值時,橢圓方程可表示為+ =" 1" 。設H( x , y )是橢圓上的一點,則| NH |2 =x2+(y-3)2 =" -" (y+3)2+2b2+18 ,其中 - b≤y≤b
若0<b<3 ,則當y =" -" b時,| NH |2有最大值b2+6b+9 ,所以由b2+6b+9=50解得b = -3±5(均舍去) …………………5分
若b≥3,則當y = -3時,| NH |2有最大值2b2+18 ,所以由2b2+18=50解得b2=16
∴所求橢圓方程為+ = 1………………7分
(ii) 設 A( x1 , y1 ) ,B( x2 , y2 ),Q( x0 , y0 ),則由兩式相減得x0+2ky0=0;……8分
又直線PQ⊥直線l,∴直線PQ的方程為y=" -" x - ,將點Q( x0 , y0 )坐標代入得y0=" -" x0- ………② ……9分
由①②解得Q( - k , ),而點Q必在橢圓的內部
∴ + < 1,…… 10分, 由此得k2 < ,又k≠0 ∴ - < k < 0或0 < k <
故當( - , 0 ) ∪( 0 , )時,A、B兩點關于過點P、Q、的直線對稱。…………12分