已知點
分別是橢圓
的左、右焦點,過
且垂直于
軸的直線與橢圓交于A、B兩點,若
為正三角形,則該橢圓的離心率
是(
)
A.
B.
C.
D.![]()
科目:高中數學 來源: 題型:
(14分)已知
、
分別是橢圓
的左、右焦點,右焦點
到上頂點的距離為2,若![]()
(1)求此橢圓的方程;
(2)點
是橢圓的右頂點,直線
與橢圓交于
、
兩點(
在第一象限內),又
、
是此橢圓上兩點,并且滿足
,求證:向量
與
共線
查看答案和解析>>
科目:高中數學 來源:2011屆陜西省師大附中、西工大附中高三第六次聯考理數 題型:解答題
(本題滿分13分)
已知
、
分別是橢圓
的左、右焦點。
(I)若
是第一象限內該橢圓上的一點,
,求點P的坐標;
(II)設過定點M(0,2)的直線
與橢圓交于不同的兩點A、B,且
為銳角(其中
為坐標原點),求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數學 來源:2013-2014學年河北省邯鄲市高三上學期第二次模擬考試文科數學試卷(解析版) 題型:解答題
已知點
分別是橢圓
的左、右焦點, 點
在橢圓上
上.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)設直線
若
、
均與橢圓
相切,試探究在
軸上是否存在定點
,點
到
的距離之積恒為1?若存在,請求出點
坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:2010-2011學年江西省高三模擬考試理科數學 題型:解答題
(12分)已知
、
分別是橢圓
的左、右焦點,點B是其上頂點,橢圓的右準線與
軸交于點N,且
。
(1)求橢圓方程;
(2)直線
:
與橢圓交于不同的兩點M、Q,若△BMQ是以MQ為底邊的等腰三角形,求
的值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com