已知a∈R,函數f(x)=(-x2+ax)ex(x∈R,e為自然對數的底數).
(1)當a=2時,求函數f(x)的單調遞增區間;
(2)若函數f(x)在(-1,1)上單調遞增,求a的取值范圍.
(1)當a=2時,f(x)=(-x2+2x)ex,
∴f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex.
令f′(x)>0,即(-x2+2)ex>0,
∵ex>0,∴-x2+2>0,解得-
<x<
.
∴函數f(x)的單調遞增區間是(-
,
).
(2)∵函數f(x)在(-1,1)上單調遞增,
∴f′(x)≥0對x∈(-1,1)都成立.
∵f′(x)=(-2x+a)ex+(-x2+ax)ex
=[-x2+(a-2)x+a]ex,
∴[-x2+(a-2)x+a]ex≥0對x∈(-1,1)都成立.
∵ex>0,
∴-x2+(a-2)x+a≥0對x∈(-1,1)都成立.
即a≥
=
=x+1-
對x∈(-1,1)都成立.
令y=x+1-
,則y′=1+
>0,
∴y=x+1-
在(-1,1)上單調遞增,
∴y<1+1-
=
,∴a≥
.
科目:高中數學 來源: 題型:
| 1 |
| 12 |
| a+1 |
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
| a |
| x |
| e | x |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com