設a>0,若不等式|x-a|+|1-x|≥1對于任意x∈R恒成立,則a的最小值是( )
A.1
B.-1
C.0
D.2
【答案】分析:要使不等式|x-a|+|1-x|≥1對于任意x∈R恒成立,需f(x)=|x-a|+|1-x|的最小值大于或等于1,問題轉化為求f(x)的最小值.
解答:解:設f(x)=|x-a|+|1-x|,則有f(x)≥|a-1|
∴f(x)有最小值|a-1|;
所以,1≤|a-1|
∴a≥2
則a的最小值是2.
故選D.
點評:本題考查絕對值不等式,以及恒成立問題,體現了等價轉化的數學思想.