中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2013•陜西)已知動點M(x,y)到直線l:x=4的距離是它到點N(1,0)的距離的2倍.
(Ⅰ) 求動點M的軌跡C的方程;
(Ⅱ) 過點P(0,3)的直線m與軌跡C交于A,B兩點.若A是PB的中點,求直線m的斜率.
分析:(Ⅰ)直接由題目給出的條件列式化簡即可得到動點M的軌跡C的方程;
(Ⅱ)經分析當直線m的斜率不存在時,不滿足A是PB的中點,然后設出直線m的斜截式方程,和橢圓方程聯立后整理,利用根與系數關系寫出x1+x2,x1x2,結合2x1=x2得到關于k的方程,則直線m的斜率可求.
解答:解:(Ⅰ)點M(x,y)到直線x=4的距離是它到點N(1,0)的距離的2倍,則
|x-4|=2
(x-1)2+y2
,即(x-4)2=4[(x-1)2+y2],
整理得
x2
4
+
y2
3
=1

所以,動點M的軌跡是橢圓,方程為
x2
4
+
y2
3
=1

(Ⅱ)P(0,3),設A(x1,y1),B(x2,y2),由A是PB的中點,得2x1=0+x2,2y1=3+y2
橢圓的上下頂點坐標分別是(0,
3
)
(0,-
3
)
,經檢驗直線m不經過這兩點,即直線m的斜率k存在.
設直線m的方程為:y=kx+3.
聯立
y=kx+3
x2
4
+
y2
3
=1

整理得:(3+4k2)x2+24kx+24=0.
x1+x2=
-24k
3+4k2
x1x2=
24
3+4k2

因為2x1=x2
x1
x2
+
x2
x1
=
1
2
+2
,得
(x1+x2)2-2x1x2
x1x2
=
5
2

所以
(
-24k
3+4k2
)2-2•
24
3+4k2
24
3+4k2
=
5
2

(-24k)2
(3+4k2)•24
=
9
2
,解得k=±
3
2

所以,直線m的斜率k=±
3
2
點評:本題考查了曲線方程,考查了直線與圓錐曲線的位置關系,考查了學生的計算能力,關鍵是看清題中給出的條件,靈活運用韋達定理,中點坐標公式進行求解,是中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•陜西)已知點M(a,b)在圓O:x2+y2=1外,則直線ax+by=1與圓O的位置關系是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•陜西)已知向量
a
=(cosx,-
1
2
),
b
=(
3
sinx,cos2x),x∈R,設函數f(x)=
a
b

(Ⅰ) 求f(x)的最小正周期.
(Ⅱ) 求f(x)在[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•陜西)已知向量 
a
=(1,m),
b
=(m,2),若
a
b
,則實數m等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•陜西)已知函數f(x)=ex,x∈R.
(Ⅰ) 求f(x)的反函數的圖象上的點(1,0)處的切線方程;
(Ⅱ) 證明:曲線y=f(x)與曲線y=
1
2
x
2
+x+1
有唯一公共點.
(Ⅲ) 設a<b,比較f(
a+b
2
)與
f(b)-f(a)
b-a
的大小,并說明理由.

查看答案和解析>>

同步練習冊答案