中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
對于數列{an},定義數列{bm}如下:對于正整數m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)設{an}是單調遞增數列,若a3=4,則b4=
 

(Ⅱ)若數列{an}的通項公式為an=2n-1,n∈N*,則數列{bm}的通項是
 
分析:利用新定義數列{bm}如下:對于正整數m,bm是使得不等式an≥m成立的所有n中的最小值可以直接求解.(Ⅰ)由題意an≥4的最小的n為3,也就是 b4=3.(Ⅱ)滿足an≥m的最小的n為[
m+1
2
+
1
2
]=[
m
2
]+1(其中[x]表示不超過x的最大整數).
解答:解:(Ⅰ)因為 {an}單調遞增,所以,當n>3時,an>4,當n=3時,an=4;
所以,an≥4的最小的n為3,也就是 b4=3.
(Ⅱ)設an≥m,則2n-1≥m,n≥
m+1
2

所以,滿足an≥m的最小的n為[
m+1
2
+
1
2
]=[
m
2
]+1(其中[x]表示不超過x的最大整數);
即bm=[
m
2
]+1,即當m是奇數時,bm=
m+1
2
,當m是偶數時bm=
m+2
2

故答案為3;bm =
m+1
2
,m是奇數
m+2
2
,m是偶數
點評:本題主要考查數列的概念、數列的基本性質,考查運算能力、推理論證能力、分類討論等數學思想方法.本題是數列與不等式綜合的較難層次題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x2+(a-3)x+a2-3a(a為常數).
(1)如果對任意x∈[1,2],f(x)>a2恒成立,求實數a的取值范圍;
(2)設實數p,q,r滿足:p,q,r中的某一個數恰好等于a,且另兩個恰為方程f(x)=0的兩實根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請求出:若不是定值,請把不是定值的表示為函數g(a),并求g(a)的最小值;
(3)對于(2)中的g(a),設H(a)=-
16
[g(a)-27]
,數列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)圖象上的兩點,橫坐標為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標原點).
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,n≥2令an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.
(3)對于給定的實數a(a>1)是否存在這樣的數列{an},使得f(an)=log3(
3
an+1)
,且a1=
1
a-1
?若存在,求出a滿足的條件;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:湖北模擬 題型:解答題

已知函數f(x)=x2+(a-3)x+a2-3a(a為常數).
(1)如果對任意x∈[1,2],f(x)>a2恒成立,求實數a的取值范圍;
(2)設實數p,q,r滿足:p,q,r中的某一個數恰好等于a,且另兩個恰為方程f(x)=0的兩實根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請求出:若不是定值,請把不是定值的表示為函數g(a),并求g(a)的最小值;
(3)對于(2)中的g(a),設H(a)=-
1
6
[g(a)-27]
,數列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

查看答案和解析>>

科目:高中數學 來源:2010年5月湖北省襄樊五中高考數學模擬試卷(文科)(解析版) 題型:解答題

已知函數f(x)=x2+(a-3)x+a2-3a(a為常數).
(1)如果對任意x∈[1,2],f(x)>a2恒成立,求實數a的取值范圍;
(2)設實數p,q,r滿足:p,q,r中的某一個數恰好等于a,且另兩個恰為方程f(x)=0的兩實根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請求出:若不是定值,請把不是定值的表示為函數g(a),并求g(a)的最小值;
(3)對于(2)中的g(a),設,數列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省揚州市寶應縣曹甸高級中學高考數學模擬試卷(解析版) 題型:解答題

已知函數f(x)=x2+(a-3)x+a2-3a(a為常數).
(1)如果對任意x∈[1,2],f(x)>a2恒成立,求實數a的取值范圍;
(2)設實數p,q,r滿足:p,q,r中的某一個數恰好等于a,且另兩個恰為方程f(x)=0的兩實根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請求出:若不是定值,請把不是定值的表示為函數g(a),并求g(a)的最小值;
(3)對于(2)中的g(a),設,數列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

查看答案和解析>>

同步練習冊答案