中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
函數f(x)的定義域為[-
3
2
1
2
],則f(sinx)的定義域為(  )
分析:由題意知-
3
2
≤sinx≤
1
2
,求出x的范圍并用區間表示,是所求函數的定義域;
解答:解:∵函數f(x)的定義域為為[-
3
2
1
2
],
-
3
2
≤sinx≤
1
2

解答2kπ-
π
3
≤x≤2kπ+
π
6
或2kπ+
6
≤x
≤2kπ+
3
(k∈Z)
∴所求函數的定義域是[2kπ-
π
3
,2kπ+
π
6
]∪[2kπ+
6
,2kπ+
3
](k∈Z)
故選D.
點評:本題的考點是抽象函數的定義域的求法,由兩種類型:①已知f(x)定義域為D,則f(g(x))的定義域是使
g(x)∈D有意義的x的集合,②已知f(g(x))的定義域為D,則g(x)在D上的值域,即為f(x)定義域.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

函數f(x)的定義域為{x|x≠0},且滿足對于定義域內任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判斷f(x)的奇偶性并證明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函數,解關于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)的定義域是[0,1),則F(x)=f[log 
12
(3-x)
]的定義域為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)試討論函數F(x)在定義域D上的單調性;
(3)若關于x的方程F(x)-2m2+3m+5=0在區間[0,1)內僅有一解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)的定義域為(-1,1),它在定義域內既是奇函數又是增函數,且f(a-3)+f(4-2a)<0,則實數a的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)的定義域為[-1,2],則函數
f(x+2)
x
的定義域為(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步練習冊答案