中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知拋物線y2=4x的焦點為F,過點P(2,0)的直線交拋物線于A(x1,y1)和B(x2,y2)兩點.則:(I)y1 y2=      ;(Ⅱ)三角形ABF面積的最小值是     

 

【答案】

(I)-8;(Ⅱ).

【解析】

試題分析:(I)①當斜率不存在時,過點P(2,0)的直線為,此時易知.②當斜率存在時,過點P(2,0)的直線可設為:.因為該直線與拋物線有兩個交點,所以.聯立方程化簡得:,由韋達定理得.綜合①②知.(Ⅱ)易知焦點,①當斜率存在時,,其中是點到直線的距離.即.在直線上,,其中.②當斜率不存在時直線為,此時易知,點到直線的距離是1,,綜上所述,三角形面積的最小值是.

考點:1.拋物線的簡單幾何性質;2.直線與圓錐曲線的位置關系;3.點到直線的距離公式.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知拋物線y2=4x的焦點為F,其準線與x軸交于點M,過M作斜率為k的直線與拋物線交于A、B兩點,弦AB的中點為P,AB的垂直平分線與x軸交于點E(x0,0).
(1)求k的取值范圍;
(2)求證:x0>3;
(3)△PEF能否成為以EF為底的等腰三角形?若能,求此k的值;若不能,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線
y
2
 
=4x
的焦點為F,過點A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線y2=4x,焦點為F,頂點為O,點P(m,n)在拋物線上移動,Q是OP的中點,M是FQ的中點.
(1)求點M的軌跡方程.
(2)求
nm+3
的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線y2=4x與直線2x+y-4=0相交于A、B兩點,拋物線的焦點為F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線y2=4x,其焦點為F,P是拋物線上一點,定點A(6,3),則|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步練習冊答案