中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)已知,
(1)求函數的表達式;           (2)判斷的奇偶性與單調性,并說明理由;
(3)對于函數,當時,恒成立,求的取值范圍.
(1)
(2)略
(3)  
解:(1)令 則
所以
(2)
所以為奇函數
時,則上單增,上也單增,
所以上單增;
時,則上單減,上也單減,
所以上單增;
所以當時,上單增.
(3),則


,則
①當時,
②當時,
由①②,得:


,令

  
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分18分,第1小題6分,第2小題6分,第3小題6分)
對于定義在D上的函數,若同時滿足
(Ⅰ)存在閉區間,使得任取,都有是常數);
(Ⅱ)對于D內任意,當時總有,則稱為“平底型”函數。
(1)判斷是否是“平底型”函數?簡要說明理由;
(2)設是(1)中的“平底型”函數,若,對一切恒成立,求實數的范圍;
(3)若是“平底型”函數,求滿足的條件,并說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)探究函數的最小值,并確定取得最小值時的值,列表如下:


0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7



8.5
5
4.17
4.05
4.005
4
4.005
4.102
4.24
4.3
5
5.8
7.57

請觀察表中值隨值變化的特點,完成下列問題:
(1) 當時,在區間上遞減,在區間      上遞增;
所以,=      時, 取到最小值為       
(2) 由此可推斷,當時,有最     值為       ,此時=    
(3) 證明: 函數在區間上遞減;
(4) 若方程內有兩個不相等的實數根,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)
設函數,其中.⑴若的定義域為區間,求的最
大值和最小值;⑵若的定義域為區間,求的取值范圍,使在定義域
內是單調減函數。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知定義在(-∞,+∞)上的函數f(x)是奇函數,且當x∈(-∞,0)時,f(x)=-xlg(2-x),則當x≥0時,f(x)的解析式是______________________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的零點個數為                                (     )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數對于任意實數滿足條件,若_______________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數上的偶函數,若對于,都有,且當時, 的值為          .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知f(x)的定義域為,若對任意x1>0,x2>0,均有f(x1+x2)=f(x1)+ f(x2),且f(8)=3,則f(2)=
A.1B.C.D.

查看答案和解析>>

同步練習冊答案