已知橢圓
:
的離心率為
,
分別為橢圓
的左、右焦點,若橢圓
的焦距為2.
⑴求橢圓
的方程;
⑵設
為橢圓上任意一點,以
為圓心,
為半徑作圓
,當圓
與橢圓的右準線
有公共點時,求△
面積的最大值.
科目:高中數學 來源: 題型:解答題
已知橢圓
的中心在原點,焦點在
軸上.若橢圓上的點
到焦點
、
的距離之和等于4.
(1)寫出橢圓
的方程和焦點坐標.
(2)過點
的直線與橢圓交于兩點
、
,當
的面積取得最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在x軸上,離心率為
,短軸長為4
.![]()
(I)求橢圓C的標準方程;
(II)直線x=2與橢圓C交于P、Q兩點,A、B是橢圓O上位于直線PQ兩側的動點,且直線AB的斜率為
.
①求四邊形APBQ面積的最大值;
②設直線PA的斜率為
,直線PB的斜率為
,判斷
+
的值是否為常數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
是橢圓
的左、右焦點,
是橢圓上位于第一象限內的一點,點
也在橢圓上,且滿足
(
是坐標原點),
,若橢圓的離心率為
.
(1)若
的面積等于
,求橢圓的方程;
(2)設直線
與(1)中的橢圓相交于不同的兩點
,已知點
的坐標為(
),點
在線段
的垂直平分線上,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓
的左焦點為
,過點
的直線交橢圓于
兩點,線段
的中點為
,
的中垂線與
軸和
軸分別交于
兩點.![]()
(1)若點
的橫坐標為
,求直線
的斜率;
(2)記△
的面積為
,△
(
為原點)的面積為
.試問:是否存在直線
,使得
?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓
的離心率為
,兩焦點分別為
,點M是橢圓C上一點,
的周長為16,設線段MO(O為坐標原點)與圓
交于點N,且線段MN長度的最小值為
.
(1)求橢圓C以及圓O的方程;
(2)當點
在橢圓C上運動時,判斷直線
與圓O的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓C的方程;
(2)設
,
、
是橢圓
上關于
軸對稱的任意兩個不同的點,連結
交橢圓
于另一點
,求直線
的斜率的取值范圍;
(3)在(2)的條件下,證明直線
與
軸相交于定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
曲線
都是以原點O為對稱中心、坐標軸為對稱軸、離心率相等的橢圓.點M的坐標是(0,1),線段MN是曲線
的短軸,并且是曲線
的長軸 . 直線
與曲線
交于A,D兩點(A在D的左側),與曲線
交于B,C兩點(B在C的左側).
(1)當
=
,
時,求橢圓
的方程;
(2)若
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com