中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知遞增的等比數列{an}滿足a2+a3+a4=28,且a3+2是a2、a4的等差中項.求數列{an}的通項公式.
分析:設等比數列{an}的公比為q,根據題目條件建立關于首項與公比的方程組,解之即可求出數列{an}的通項公式,注意{an}為遞增數列,避免多解.
解答:解:設等比數列{an}的公比為q,依題意:有2(a3+2)=a2+a4①,
又a2+a3+a4=28,將①代入得a3=8,
∴a2+a4=20
a1q+a1q3=20
a1q2=8
,解得
a1=2
q=2
a1=32
q=
1
2

又{an}為遞增數列.
∴a1=2,q=2,
∴an=2n
點評:本題主要考查了等比數列的通項公式,以及等差數列的性質,同時考查了解方程,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知遞增的等比數列{an}滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若bn=log2an+1,Sn是數列{bn}的前n項和,求使Sn>42+4n成立的n的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知遞增的等比數列{an}滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若bn=log2an+1,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知遞增的等比數列{an}滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若bn=log2an+1,Sn是數列{anbn}的前n項和,求Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知遞增的等比數列{an}滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項,若bn=log2an+1,則數列{bn}的前n項和Sn=
n(n+3)
2
n(n+3)
2

查看答案和解析>>

同步練習冊答案