中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知M是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點,兩焦點為F1,F2,點P是△MF1F2的內心,連接MP并延長交F1F2于N,則
|MP|
|PN|
的值為(  )
A、
a
a2-b2
B、
b
a2-b2
C、
a2-b2
b
D、
a2-b2
a
分析:由于三角形的內心是三個內角的平分線的交點,根據三角形內角平分線性質定理把所求的比值轉化為三角形邊長之間的比值關系來求解.
解答:精英家教網解:如圖,連接PF1,PF2.在△MF1P中,F1P是∠MF1N的角平分線,根據三角形內角平分線性質定理,
|MP|
|PN|
=
|MF1|
|F1N|

同理可得
|MP|
|PN|
=
|MF2|
|F2N|
,固有
|MP|
|PN|
=
|MF1|
|F1N|
=
|MF2|
|F2N|

根據等比定理
|MP|
|PN|
=
|MF1|+|MF2|
|F1N|+|F2N|
=
2a
2
a2-b2
=
a
a2-b2

故選:A.
點評:本題主要考查圓錐曲線的定義的應用,試題在平面幾何中的三角形內角平分線性質定理、初中代數中的等比定理和圓錐曲線的定義之間進行了充分的交匯,在解決涉及到圓錐曲線上的點與焦點之間的關系的問題中,圓錐曲線的定義往往是解題的突破口.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•江西模擬)如圖,已知A是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的一個動點,F1,F2分別為橢圓的左、右焦點,弦AB過點F2,當AB⊥x軸時,恰好有|AF1|=3|AF2|.
(1)求橢圓的離心率;
(2)設P是橢圓的左頂點,PA,PB分別與橢圓右準線交與M,N兩點,求證:以MN為直徑的圓D一定經過一定點,并求出定點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A是橢圓短軸上的一個頂點,橢圓的離心率為
1
2
,點B在x軸上,AB⊥AF,A、B、F三點確定的圓C恰好與直線x+
3
y+3=0
相切.
(1)求橢圓的方程;
(2)設O為橢圓的中心,過F點作直線交橢圓于M、N兩點,在橢圓上是否存在點T,使得
OM
+
ON
+
OT
=
0
,如果存在,則求點T的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A是橢圓短軸上的一個頂點,橢圓的離心率為
1
2
,點B在x軸上,AB⊥AF,A,B,F三點確定的圓C恰好與直線x+
3
y+3=0
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過F作斜率為k(k≠0)的直線l交橢圓于M,N兩點,P為線段MN的中點,設O為橢圓中心,射線OP交橢圓于點Q,若
OM
+
ON
=
OQ
,若存在求k的值,若不存在則說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•上饒一模)已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A是橢圓短軸上的一個頂點,橢圓的離心率為
1
2
,點B在x軸上,AB⊥AF,A、B、F三點確定的圓C恰好與直線x+
3
y+3=0
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設O為橢圓的中心,是否存在過F點,斜率為k(k∈R,l≠0)且交橢圓于M、N兩點的直線,當從O點引出射線經過MN的中點P,交橢圓于點Q時,有
OM
+
ON
=
OQ
成立.如果存在,則求k的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案