已知拋物線
的焦點與橢圓
的右焦點重合.(Ⅰ)求拋物線
的方程;
(Ⅱ)動直線
恒過點
與拋物線
交于A、B兩點,與
軸交于C點,請你觀察并判斷:在線段MA,MB,MC,AB中,哪三條線段的長總能構成等比數列?說明你的結論并給出證明.
(Ⅰ)
(Ⅱ)存在三線段MA、MC、MB的長成等比數列.
【解析】
試題分析:(Ⅰ)∵橢圓方程為:
,∴
,
所以
,橢圓的右焦點為(1 , 0),拋物線的焦點為(
,0),所以
=2,
則拋物線的方程為
(Ⅱ)設直線l:
,則C(-
,0),
由
得
,
因為△=
,所以k<1,
設A(x1,y1),B(x2,y2),則
,
,
所以由弦長公式得:
,
,
,
,
通過觀察得:
=(
)·
=(
)·
=
.
若
=
,則
,不滿足題目要求.
所以存在三線段MA、MC、MB的長成等比數列.
考點:直線與圓錐曲線的綜合問題;拋物線的標準方程.
點評:本題考查橢圓的方程與性質,考查拋物線的方程,考查直線與武平縣的位置關系,考查韋達定理的運用,考查等比數列的判定,屬于中檔題.
科目:高中數學 來源: 題型:
| x2 |
| a2 |
| y2 |
| b2 |
| 9y2 |
| 8 |
|
| 2 |
| 3 |
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| 3 |
| r1 |
| r2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
| 2m |
| 3 |
| x2 |
| 4m2 |
| y2 |
| 3m2 |
| 2m |
| 3 |
查看答案和解析>>
科目:高中數學 來源:2012-2013學年上海市浦東新區高三4月高考預測(二模)理科數學試卷(解析版) 題型:解答題
(1)設橢圓
:
與雙曲線
:
有相同的焦點
,
是橢圓
與雙曲線
的公共點,且
的周長為
,求橢圓
的方程;
我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓
”的方程為
.設“盾圓
”上的任意一點
到
的距離為
,
到直線
的距離為
,求證:
為定值;
(3)由拋物線弧
:
(
)與第(1)小題橢圓弧
:
(
)所合成的封閉曲線為“盾圓
”.設過點
的直線與“盾圓
”交于
兩點,
,
且
(
),試用
表示
;并求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓
的長軸長是焦距的兩倍,其左、右焦點依次為
、
,拋物線![]()
的準線與
軸交于
,橢圓
與拋物線
的一個交點為
.
(1)當
時,求橢圓
的方程;
(2)在(1)的條件下,直線
過焦點
,與拋物線
交于
兩點,若弦長
等于
的周長,求直線
的方程;
(3)由拋物線弧![]()
和橢圓弧![]()
![]()
(
)合成的曲線叫“拋橢圓”,是否存在以原點
為直角頂點,另兩個頂點
落在“拋橢圓”上的等腰直角三角形
,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓
的長軸長是焦距的兩倍,其左、右焦點依次為
、
,拋物線![]()
的準線與
軸交于
,橢圓
與拋物線
的一個交點為
.
(1)當
時,求橢圓
的方程;
(2)在(1)的條件下,直線
過焦點
,與拋物線
交于
兩點,若弦長
等于
的周長,求直線
的方程;
(3)由拋物線弧![]()
和橢圓弧![]()
![]()
(
)合成的曲線叫“拋橢圓”,是否存在以原點
為直角頂點,另兩個頂點
落在“拋橢圓”上的等腰直角三角形
,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com