中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知x>0,則y=x2+
2
x
的最小值為______.
∵x>0,∴
1
x
>0,
由基本不等式得:x2+
2
x
=x2+
1
x
+
1
x
≥3
3x2
1
x
1
x
=3,
當且僅當x2=
1
x
=1,即x=1時等號成立,
∴當x=1時,x2+
2
x
有最小值為3,
故答案為3.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知x>0,則y=3x+
4
x
有(  )
A、最大值4
3
B、最小值4
3
C、最大值2
3
D、最小值2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-(a+2)x+alnx,其中常數a>0.
(1)當a>2時,求函數f(x)的單調遞增區間;
(2)當a=4時,是否存在實數m,使得直線6x+y+m=0恰為曲線y=f(x)的切線?若存在,求出m的值;若不存在,說明理由;
(3)設定義在D上的函數y=h(x)的圖象在點P(x0,h(x0))處的切線方程為l:y=g(x),當x≠x0時,若
h(x)-g(x)x-x0
>0
在D內恒成立,則稱P為函數y=h(x)的“類對稱點”.當a=4,試問y=f(x)是否存在“類對稱點”?若存在,請至少求出一個“類對稱點”的橫坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知x>0,則y=x2+
2x
的最小值為
3
3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x2-(a+2)x+alnx,其中常數a>0.
(1)當a>2時,求函數f(x)的單調遞增區間;
(2)當a=4時,是否存在實數m,使得直線6x+y+m=0恰為曲線y=f(x)的切線?若存在,求出m的值;若不存在,說明理由;
(3)設定義在D上的函數y=h(x)的圖象在點P(x0,h(x0))處的切線方程為l:y=g(x),當x≠x0時,若
h(x)-g(x)
x-x0
>0
在D內恒成立,則稱P為函數y=h(x)的“類對稱點”.當a=4,試問y=f(x)是否存在“類對稱點”?若存在,請至少求出一個“類對稱點”的橫坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案