中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如圖,已知雙曲線C1:,曲線C2:.P是平面內一點.若存在過點P的直線與C1、C2都有共同點,則稱P為“C1-C2型點”.

(1)在正確證明C1的左焦點是“C1-C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);

(2)設直線y=kx與C2有公共點,求證>1,進而證明圓點不是“C1-C2型點”;

(3)求證:圓內的點都不是“C1-C2型點”.

【答案】 (1)

【解析】 (1)    顯然,由雙曲線的幾何圖像性質可知,過.從曲線圖像上取點P(0,1),則直線。這時直線方程為

  

(2) 先證明“若直線y=kx與有公共點,則>1”.

雙曲線

.

.

所以直線y=kx與有公共點,則>1 . (證畢)

所以原點不是“C1-C2型點”;(完)

(3)設直線過圓內一點,則直線斜率不存在時與曲線無交點。

設直線方程為:y = kx + m,則:

假設直線與曲線相交上方,則

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,已知雙曲線C1
y2
m
-
x2
n
=1(m>0,n>0),圓C2:(x-2)2+y2=2,雙曲線C1的兩條漸近線與圓C2相切,且雙曲線C1的一個頂點A與圓心C2關于直線y=x對稱,設斜率為k的直線l過點C2
(1)求雙曲線C1的方程;
(2)當k=1時,在雙曲線C1的上支上求一點P,使其與直線l的距離為2.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•上海)如圖,已知雙曲線C1
x2
2
-y2=1
,曲線C2:|y|=|x|+1,P是平面內一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1-C2型點”
(1)在正確證明C1的左焦點是“C1-C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”;
(3)求證:圓x2+y2=
1
2
內的點都不是“C1-C2型點”

查看答案和解析>>

科目:高中數學 來源:2013年全國普通高等學校招生統一考試文科數學(上海卷解析版) 題型:填空題

如圖,已知雙曲線C1,曲線C2:|y|=|x|+1,P是平面內一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1﹣C2型點“

(1)在正確證明C1的左焦點是“C1﹣C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);

(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1﹣C2型點”;

(3)求證:圓x2+y2=內的點都不是“C1﹣C2型點”

 

查看答案和解析>>

科目:高中數學 來源:上海 題型:解答題

如圖,已知雙曲線C1
x2
2
-y2=1
,曲線C2:|y|=|x|+1,P是平面內一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1-C2型點“
(1)在正確證明C1的左焦點是“C1-C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”;
(3)求證:圓x2+y2=
1
2
內的點都不是“C1-C2型點”
精英家教網

查看答案和解析>>

同步練習冊答案