如圖,在四棱錐
中,底面
是正方形,側(cè)面
是正三角形,且平面
⊥底面![]()
![]()
(1)求證:
⊥平面![]()
(2)求直線
與底面
所成角的余弦值;
(3)設(shè)
,求點(diǎn)
到平面
的距離.
(1)∵底面ABCD是正方形,∴AB⊥AD,∵平面PAD⊥底面ABCD,AB
底面ABCD,底面ABCD∩平面PAD=AD,∴AB⊥平面PAD;(2)
;(3)![]()
解析試題分析:(1)∵底面ABCD是正方形,∴AB⊥AD,∵平面PAD⊥底面ABCD,AB
底面ABCD,底面ABCD∩平面PAD=AD,∴AB⊥平面PAD.
(2)取AD的中點(diǎn)F,連結(jié)AF,CF,∵平面PAD⊥平面ABCD,且PF⊥AD,
∴PF⊥平面BCD,∴CF是PC在平面ABCD上的射影,
∴∠PCF是直線PC與底面ABCD所成的角![]()
(3)設(shè)點(diǎn)D到平面PBC的距離為h,![]()
在△PBC中,易知PB=PC=
,![]()
又![]()
![]()
即點(diǎn)D到平面PBC的距離為![]()
考點(diǎn):本題考查了線面角的求法及點(diǎn)到面距離的問(wèn)題
點(diǎn)評(píng):對(duì)于距離問(wèn)題往往通過(guò)轉(zhuǎn)化的方法簡(jiǎn)化計(jì)算,這兩個(gè)問(wèn)題是立體幾何中的重點(diǎn)問(wèn)題,要求我們格外注意這類問(wèn)題
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題15分)如圖,在四棱錐
中,
底面
,
,
,
,
,
是
的中點(diǎn)。![]()
(Ⅰ)證明:
;
(Ⅱ)證明:
平面
;
(Ⅲ)求二面角
的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的菱形,
BCD=60
,E是CD的中點(diǎn),PA
底面ABCD,PA=2.![]()
(1)證明:平面PBE
平面PAB;
(2)求平面PAD和平面PBE所成二面角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分10分) 如圖,P—ABCD是正四棱錐,
是正方體,其中![]()
![]()
(1)求證:
;
(2)求平面PAD與平面
所成的銳二面角
的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖所示,△
是正三角形,
和
都垂直于平面
,且
,
,
是
的中點(diǎn).![]()
(1)求證:
∥平面
;
(2)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)在正四棱柱ABCD-A1B1C1D1中,E為CC1的中點(diǎn).![]()
(1)求證:AC1∥平面BDE;(2)求異面直線A1E與BD所成角。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,E, F分別是棱BC,CC1上的點(diǎn),CF="AB=2CE," AB:AD:AA1=1:2:4.![]()
(Ⅰ)求異面直線EF與A1D所成角的余弦值;
(Ⅱ)證明AF⊥平面A1ED;
(Ⅲ)求二面角A1-ED-F的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐
中,
⊥底面
,底面
為梯形,
,
,
,點(diǎn)
在棱
上,且
.![]()
(1)求證:平面
⊥平面
;
(2)求平面
和平面
所成銳二面角的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com