中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知等邊三角形ABC的高為h,它的內切圓半徑為r,則r:h=1:3,由此類比得:已知正四面體的高為H,它的內切球半徑為R,則R:H=
1:4
1:4
分析:平面圖形類比空間圖形,二維類比三維得到類比平面幾何的結論,則正四面體的內切球半徑等于這個正四面體高的 1:4,證明時連接球心與正四面體的四個頂點.把正四面體分成四個高為R的三棱錐,正四面體的體積,就是四個三棱錐的體積的和,求解即可.
解答:解:從平面圖形類比空間圖形,從二維類比三維,
可得如下結論:正四面體的內切球半徑等于這個正四面體高的 1:4.
證明如下:球心到正四面體一個面的距離即球的半徑R,連接球心與正四面體的四個頂點.
把正四面體分成四個高為R的三棱錐,所以4×
1
3
S•R=
1
3
•S•H,R=
1
4
H.
(其中S為正四面體一個面的面積,H為正四面體的高)
故答案為:1:4.
點評:本題主要考查類比推理.類比推理是指依據兩類數學對象的相似性,將已知的一類數學對象的性質類比遷移到另一類數學對象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(或猜想).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,已知等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C-AB-D的余弦值為
3
3
,M是AC的中點,則EM,DE所成角的余弦值等于
3
6
3
6

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等邊三角形ABC的邊長為a,那么三角形ABC的斜二測直觀圖的面積為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等邊三角形ABC的邊長為1,則
AB
BC
=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等邊三角形ABC的邊長為2,⊙A的半徑為1,PQ為⊙A的任意一條直徑,則
BP
CQ
-
AP
CB
=
1
1

查看答案和解析>>

同步練習冊答案