以直角坐標(biāo)系的原點O為極點,
軸的正半軸為極軸,已知點P的直角坐標(biāo)為(1,-5),點M的極坐標(biāo)為(4,
),若直線
過點P,且傾斜角為
,圓C以M為圓心,4為半徑。
(I)求直線
的參數(shù)方程和圓C的極坐標(biāo)方程;
(II)試判定直線
與圓C的位置關(guān)系。
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
,
為參數(shù)),在以
為極點,
軸的正半軸為極軸的極坐標(biāo)系中,曲線
是圓心在極軸上,且經(jīng)過極點的圓 已知曲線
上的點
對應(yīng)的參數(shù)
,射線
與曲線
交于點![]()
(1)求曲線
,
的方程;
(2)若點
,
在曲線
上,求
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系的軸的正半軸重合.直線的參數(shù)方程是
(為參數(shù)),曲線C的極坐標(biāo)方程為
.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C相交于M,N兩點,求M,N兩點間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線
的參數(shù)方程為
為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為
.
(I)判斷直線
與圓C的位置關(guān)系;
(Ⅱ)若點P(x,y)在圓C上,求
x +y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的極坐標(biāo)方程為
,點
為其左,右焦點,直線
的參數(shù)方程為
(
為參數(shù),
).
(Ⅰ)求直線
和曲線C的普通方程;
(Ⅱ)求點
到直線
的距離之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
坐標(biāo)系與參數(shù)方程
已知圓錐曲線
為參數(shù))和定點
F1,F(xiàn)2是圓錐曲線的左右焦點。
(1)求經(jīng)過點F2且垂直于直線AF1的直線l的參數(shù)方程;
(2)以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
在直角坐標(biāo)系
中,圓
的參數(shù)方程為
(
為參數(shù),
)。以
為極點,
軸正半軸為極軸,并取相同的單位建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
。寫出圓心的極坐標(biāo),并求當(dāng)
為何值時,圓
上的點到直線
的最大距離為3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,O為極點,已知圓C的圓心為
,半徑r=1,P在圓C上運動。
(I)求圓C的極坐標(biāo)方程;
(II)在直角坐標(biāo)系(與極坐標(biāo)系取相同的長度單位,且以極點O為原點,以極軸為x軸正半軸)中,若Q為線段OP的中點,求點Q軌跡的直角坐標(biāo)方程。
(I)求圓C的極坐標(biāo)方程;
(II)在直角坐標(biāo)系(與極坐標(biāo)系取相同的長度單位,且以極點O為原點,以極軸為x軸正半軸)
中,若Q為線段OP的中點,求點Q軌跡的直角坐標(biāo)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系中,直線
的參數(shù)方程是
(
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸,建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為![]()
.
(1)求直線
的極坐標(biāo)方程;
(2)若直線
與曲線
相交于
、
兩點,求
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com