已知正項(xiàng)等差數(shù)列
的前
項(xiàng)和為
,若
,且
成等比數(shù)列.
(Ⅰ)求
的通項(xiàng)公式;
(Ⅱ)記
的前
項(xiàng)和為
,求
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{
}的首項(xiàng)a1=1,公差d>0,且
分別是等比數(shù)列{
}的b2,b3,b4.
(I)求數(shù)列{
}與{{
}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
}對任意自然數(shù)n均有
成立,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
中,
,
,
.
(1)證明:數(shù)列
是等比數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(2)在數(shù)列
中,是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng);若不存在,請說明理由;
(3)若
且
,
,求證:使得
,
,
成等差數(shù)列的點(diǎn)列
在某一直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
是首項(xiàng)為1,公差為2的等差數(shù)列,數(shù)列
的前n項(xiàng)和
.
(I)求數(shù)列
的通項(xiàng)公式;
(II)設(shè)
, 求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)集合W是滿足下列兩個(gè)條件的無窮數(shù)列
的集合:①對任意
,
恒成立;②對任意
,存在與n無關(guān)的常數(shù)M,使
恒成立.![]()
(1)若
是等差數(shù)列,
是其前n項(xiàng)和,且
試探究數(shù)列
與集合W之間的關(guān)系;
(2)設(shè)數(shù)列
的通項(xiàng)公式為
,且
,求M的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
、
滿足
,且
,其中
為數(shù)列
的前
項(xiàng)和,又
,對任意
都成立。
(1)求數(shù)列
、
的通項(xiàng)公式;
(2)求數(shù)列
的前
項(xiàng)和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
中,
,
,數(shù)列
中,
,且點(diǎn)
在直線
上.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)求數(shù)列
的通項(xiàng)公式;
(Ⅲ)若
,求數(shù)列
的前項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線
的方程為
,數(shù)列
滿足
,其前
項(xiàng)和為
,點(diǎn)
在直線
上.
(1)求數(shù)列
的通項(xiàng)公式;
(2)在
和
之間插入
個(gè)數(shù),使這
個(gè)數(shù)組成公差為
的等差數(shù)列,令
,試證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列
中,
,
,
對任意
成立,令
,且
是等比數(shù)列.
(1)求實(shí)數(shù)
的值;
(2)求數(shù)列
的通項(xiàng)公式;
(3)求證:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com