已知曲線
的參數(shù)方程是
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)寫出
的極坐標(biāo)方程和
的直角坐標(biāo)方程;
(2)已知點(diǎn)
、
的極坐標(biāo)分別是
、
,直線
與曲線
相交于
、
兩點(diǎn),射線
與曲線
相交于點(diǎn)
,射線
與曲線
相交于點(diǎn)
,求
的值.
(1)
:
,
;(2)
.
解析試題分析:(1)題中參數(shù)方程化為普通方程只要消去參數(shù)
,極坐標(biāo)系與直角坐標(biāo)系的互化公式為:
;(2)首先明確
是什么?可把點(diǎn)
坐標(biāo)化為直角坐標(biāo),發(fā)現(xiàn)
就是圓心,從而線段
是圓的直徑,因此題中有
,即
,我們在極坐標(biāo)系中證明本題結(jié)論較方便,因?yàn)榭稍O(shè)
,代入
的極坐標(biāo)方程,可得
,代入即可求得
.
試題解析:(1)曲線
的普通方程為
1分
化為極坐標(biāo)方程為:
3分
曲線
的普通方程為:
5分
(2)在直角坐標(biāo)系下,
,
線段
是是圓
的一條直徑,
∴
,由
,有
6分
是橢圓上的兩點(diǎn),在極坐標(biāo)系下,設(shè)
分別代入
,
有
,
8分
解得:
,
.
則
9分
即![]()
![]()
. 10分
考點(diǎn):(1)參數(shù)方程,極坐標(biāo)方程與普通方程的互化;(2)極徑的計(jì)算.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某圓的極坐標(biāo)方程是
,求:
(1)求圓的普通方程和一個參數(shù)方程;
(2)圓上所有點(diǎn)
中
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線
(
為參數(shù)),曲線
,將
的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)縮短為原來的
得到曲線
.
(1)求曲線
的普通方程,曲線
的直角坐標(biāo)方程;
(2)若點(diǎn)P為曲線
上的任意一點(diǎn),Q為曲線
上的任意一點(diǎn),求線段
的最小值,并求此時的P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,已知曲線C1:ρ=12sinθ,曲線C2:ρ=12cos
.
(1)求曲線C1和C2的直角坐標(biāo)方程;
(2)若P、Q分別是曲線C1和C2上的動點(diǎn),求PQ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程是(為參數(shù));以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.
(1)寫出直線的普通方程與圓的直角坐標(biāo)方程;
(2)由直線上的點(diǎn)向圓引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C的極坐標(biāo)方程為ρ2=
,以極點(diǎn)為原點(diǎn),極軸所在直線為x軸建立平面直角坐標(biāo)系.
(1)求曲線C的直角坐標(biāo)方程及參數(shù)方程.
(2)若P(x,y)是曲線C上的一個動點(diǎn),求x+2y的最小值,并求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線
的參數(shù)方程為
(t為參數(shù)),曲線C的參數(shù)方程為
(
為參數(shù)).
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為
,判斷點(diǎn)P與直線
的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個動點(diǎn),求點(diǎn)Q到直線
的距離的最小值與最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com