中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知1≤lg
x
y
≤2,2≤lg
x3
y
≤3,則lg
x3
3y
的取值范圍是
[
26
15
,3]
[
26
15
,3]
分析:由于1≤lg
x
y
≤2,2≤lg
x3
y
≤3,則
1≤lgx-lgy≤2
2≤3lgx-
1
2
lgy≤3
,利于線性規劃的有關知識來求出lg
x3
3y
=3lgx-
1
3
lgy
的范圍.
解答:解:由于1≤lg
x
y
≤2,2≤lg
x3
y
≤3,則
1≤lgx-lgy≤2
2≤3lgx-
1
2
lgy≤3
,且lg
x3
3y
=3lgx-
1
3
lgy

若令lgx=a,lgy=b,則問題及轉化為求在線性約束
1≤a-b≤2
2≤3a-
1
2
b≤3
條件下的Z=3a-
1
3
b
的最值問題.
畫出可行域,如圖中陰影部分所示,

而直線Z=3a-
1
3
b
上下平移在虛線位置分別取得最值,
a-b=2
3a-
1
2
b=2
得到A(
2
5
,-
8
5
)
,此時Z=
26
15

a-b=1
3a-
1
2
b=3
得到B(1,0),此時Z=3
lg
x3
3y
的取值范圍是[
26
15
,3]

故答案為 [
26
15
,3]
點評:本題主要考查了對數的運算性質以及線性規劃,熟記一些常用的結論可以簡化基本運算.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知1≤lg
x
y
≤2,2≤lg
x2
y
≤3
,求lg
x2
3y
的范圍.

查看答案和解析>>

同步練習冊答案