如圖,已知
是圓
的切線(xiàn),切點(diǎn)為
,
是圓
的直徑,
與圓
交于點(diǎn)
,
,圓
的半徑是
,那么
。![]()
2
解析試題分析:∵
是圓
的切線(xiàn),∴
,又
,∴![]()
考點(diǎn):本題考查了圓中切線(xiàn)的性質(zhì)
點(diǎn)評(píng):掌握切線(xiàn)的性質(zhì)及切割線(xiàn)定理是解決此類(lèi)問(wèn)題的關(guān)鍵。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,在△ABC中,AB=AC,∠C=720,⊙O過(guò)A、B兩點(diǎn)且與BC相切于點(diǎn)B,與AC交于點(diǎn)D,連結(jié)BD,若BC=
,則AC= ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,
是半徑為
的圓
的直徑,點(diǎn)
在
的延長(zhǎng)線(xiàn)上,
是圓
的切線(xiàn),點(diǎn)
在直徑
上的射影是
的中點(diǎn),則
=
.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
(幾何證明選講)如圖,從圓
外一點(diǎn)
引圓的切線(xiàn)
和割線(xiàn)
,已知
,
,圓
的半徑為
,則圓心
到
的距離為 . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖1,在平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)B在
軸的正半軸上,O為坐標(biāo)原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn).
(1)當(dāng)點(diǎn)A第一次落到
軸正半軸上時(shí),求邊BC在旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積;
(2)若線(xiàn)段AB與
軸的交點(diǎn)為M(如圖2),線(xiàn)段BC與直線(xiàn)
的交點(diǎn)為N.設(shè)
的周長(zhǎng)為
,在正方形OABC旋轉(zhuǎn)的過(guò)程中
值是否有改變?并說(shuō)明你的結(jié)論;
(3)設(shè)旋轉(zhuǎn)角為
,當(dāng)
為何值時(shí),
的面積最小?求出這個(gè)最小值, 并求出此時(shí)△BMN的內(nèi)切圓半徑.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖4,
是圓
上的兩點(diǎn),且
,
,
為
的中點(diǎn),連接
并延長(zhǎng)交圓
于點(diǎn)
,則
. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知圓
內(nèi)接四邊形
,
切圓
于點(diǎn)
,且與四邊形
對(duì)角線(xiàn)
延長(zhǎng)線(xiàn)交于點(diǎn)
,
切圓O于點(diǎn)
,且與
延長(zhǎng)線(xiàn)交于點(diǎn)
,延長(zhǎng)
交
于點(diǎn)
,若
.![]()
(1)求證:
;
(2)求證:
四點(diǎn)共圓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
(幾何證明選講選做題)如圖3,PAB、PCD為⊙O的兩條割線(xiàn),若 PA=5,AB=7,CD=11,
,則BD等于 .![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com