已知橢圓
的右焦點為
,離心率
,
是橢圓上的動點.
(1)求橢圓標準方程;
(2)若直線
與
的斜率乘積
,動點
滿足
,(其中實數
為常數).問是否存在兩個定點
,使得
?若存在,求
的坐標及
的值;若不存在,說明理由.
科目:高中數學 來源: 題型:解答題
如圖,曲線C1是以原點O為中心,F1,F2為焦點的橢圓的一部分.曲線C2是以O為頂點,F2為焦點的拋物線的一部分,A是曲線C1和C2的交點且∠AF2F1為鈍角,若|AF1|=
,|AF2|=
.![]()
(1)求曲線C1和C2的方程;
(2)設點C是C2上一點,若|CF1|=
|CF2|,求△CF1F2的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓![]()
的焦點在x軸上,左右頂點分別為
,上頂點為B,拋物線
分別以A,B為焦點,其頂點均為坐標原點O,
與
相交于直線
上一點P.
(1)求橢圓C及拋物線
的方程;
(2)若動直線
與直線OP垂直,且與橢圓C交于不同的兩點M,N,已知點
,求
的最小值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓
的方程為
,定直線
的方程為
.動圓
與圓
外切,且與直線
相切.
(1)求動圓圓心
的軌跡
的方程;
(2)直線
與軌跡
相切于第一象限的點
, 過點
作直線
的垂線恰好經過點
,并交軌跡
于異于點
的點
,求直線
的方程及
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(14分)(2011•湖北)平面內與兩定點A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(Ⅰ)求曲線C的方程,并討論C的形狀與m值的關系;
(Ⅱ)當m=﹣1時,對應的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應的曲線為C2,設F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
過拋物線C:
上的點M分別向C的準線和x軸作垂線,兩條垂線及C的準線和x軸圍成邊長為4的正方形,點M在第一象限.
(1)求拋物線C的方程及點M的坐標;
(2)過點M作傾斜角互補的兩條直線分別與拋物線C交于A,B兩點,且直線AB過點(0,-1),求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點
,
的坐標分別為
,
.直線
,
相交于點
,且它們的斜率之積是
,記動點
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設
是曲線
上的動點,直線
,
分別交直線
于點
,線段
的中點為
,求直線
與直線
的斜率之積的取值范圍;
(3)在(2)的條件下,記直線
與
的交點為
,試探究點
與曲線
的位置關系,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點
是拋物線
上不同的兩點,點
在拋物線
的準線
上,且焦點
到直線
的距離為
.
(I)求拋物線
的方程;
(2)現給出以下三個論斷:①直線
過焦點
;②直線
過原點
;③直線
平行
軸.
請你以其中的兩個論斷作為條件,余下的一個論斷作為結論,寫出一個正確的命題,并加以證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com