中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
函數數列{fn(x)}滿足:f1(x)=
x
1+x2
(x>0),fn+1(x)=f1[fn(x)].
(Ⅰ)求f2(x),f3(x);
(Ⅱ)猜想fn(x)的解析式,并用數學歸納法證明.
(Ⅰ)∵f1(x)=
x
1+x2
(x>0),fn+1(x)=f1[fn(x)],
∴f2(x)=f1[f1(x)]=
f1(x)
1+f12(x)
=
x
1+x2
1+
x2
1+x2
=
x
1+2x2

f3(x)=f1[f2(x)]=
f2(x)
1+f22(x)
=
x
1+2x2
1+
x2
1+2x2
=
x
1+3x2
,…
(Ⅱ)猜想fn(x)=
x
1+nx2

下面用數學歸納法證明:
1°當n=1時,猜想成立.
2°假設n=k時猜想成立,即有fk(x)=
x
1+kx2

那么fk+1(x)=f1[fk(x)]=
fk(x)
1+fk2(x)
=
x
1+kx2
1+
x2
1+kx2
=
x
1+(k+1)x2

這就是說,當n=k+1時,猜想也成立.
由1°2°可知,猜想對n∈N*均成立.
故fn(x)=
x
1+nx2
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

若不等式
1
n+1
+
1
n+2
+…+
1
3n+1
a
24
對一切正整數n都成立,
(1)猜想正整數a的最大值,
(2)并用數學歸納法證明你的猜想.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

用數學歸納法證明1+q+q2+…+qn+1=
qn+2-1
q-1
(q≠1)
.在驗證n=1等式成立時,等式的左邊的式子是(  )
A.1B.1+qC.1+q+q2D.1+q+q2+q3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列{an}是正數組成的數列,其前n項和為Sn,對于一切n∈N*均有an與2的等差中項等于Sn與2的等比中項.
(1)計算a1,a2,a3,并由此猜想{an}的通項公式an;(2)用數學歸納法證明(1)中你的猜想.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

對任意復數,定義,其中的共軛復數.對任意復數,有如下四個命題:



.
則真命題的個數是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

, 其中都是實數,是虛數單位,則

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知,求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設復數z滿足,那么z等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

用反證法證明命題“”,其反設正確的是
A.B.
C.D.

查看答案和解析>>

同步練習冊答案