中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如圖,已知圓內接四邊形ABCD的邊長分別為AB=2,BC=6,AD=CD=4.
(1)求角A的度數;
(2)求四邊形ABCD的面積.

解:(1)由余弦定理得BD2=4+16-2×2×4cosA=20-16cosA,
又BD2=16+36-2×4×6cosC=52-48cosC,∵A+C=180°,
∴20-16cosA=52+48cosA,∴,∴A=120°.
(2)SABCD=S△ABD+S△CBD=
分析:(1)利用余弦定理求出A,C的關系,結合圓內接四邊形的對角和為180°,求出A的值.
(2)利用三角形的面積的和,求出四邊形的面積即可.
點評:本題考查余弦定理三角形的面積公式的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,已知圓內接四邊形ABCD的邊長分別為AB=2,BC=6,AD=CD=4.
(1)求角A的度數;
(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知圓內接四邊形ABCD的邊長為AB=2,BC=6,CD=DA=4,則四邊形ABCD面積為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知△ABC內接于圓O,AB是圓O的直徑,四邊形DBCE為平行四邊形,EC⊥平面ABC,AB=2AC=2,tan∠DAB=
3
2

(1)設F是CD的中點,證明:OF∥平面ADE;
(2)求點B到平面ADE的距離;
(3)畫出四棱錐A-BCED的正視圖(圓O在水平面,ABD在正面,要求標明垂直關系與至少一邊的長).

查看答案和解析>>

科目:高中數學 來源:2011年江蘇省蘇州中學高三5月復習回歸課本數學訓練試卷(2)(解析版) 題型:解答題

如圖,已知圓內接四邊形ABCD的邊長分別為AB=2,BC=6,AD=CD=4.
(1)求角A的度數;
(2)求四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案