(1)試求函數(shù)f(x)的最大值和最小值;
(2)試比較f(
n)與
n+2的大小(n∈N);
(3)某人發(fā)現(xiàn):當(dāng)x=
n(n∈N)時(shí),有f(x)<2x+2.由此他提出猜想:對(duì)一切x∈(0,1],都有f(x)<2x+2,請你判斷此猜想是否正確,并說明理由.
解:(1)設(shè)0≤x1<x2≤1,則必存在實(shí)數(shù)t∈(0,1),使得x2=x1+t,
由條件③得,f(x2)=f(x1+t)≥f(x1)+f(t)-2,
∴f(x2)-f(x1)≥f(t)-2,由條件②得,f(x2)-f(x1)≥0,故當(dāng)0≤x≤1時(shí),有f(0)≤f(x)≤f(1).
又在條件③中,令x1=0,x2=1,得f(1)≥f(1)+f(0)-2,即f(0)≤2,∴f(0)=2,故函數(shù)f(x)的最大值為3,最小值為2.
(2)在條件③中,令x1=x2=
,得f(
)≥2f(
n)-2,即f(
)-2≤
[f(
)-2],
故當(dāng)n∈N*時(shí),有f(
)-2≤
[f(
)-2]≤
[f(
)-2]≤…≤
[f(
)-2]=
,
即f(
)≤
+2.
又f(
)=f(1)=3≤2+
,
所以對(duì)一切n∈N,都有f(
)≤
+2.
(3)對(duì)一切x∈(0,1),都有f(x)<2x+2.
對(duì)任意滿足x∈(0,1),總存在n(n∈N),使得
<x≤
,
根據(jù)(1)(2)結(jié)論,可知:f(x)≤f(
)≤
+2,且2x+2>2×
+2=
+2,
故有f(x)<2x+2.綜上所述,對(duì)任意x∈(0,1),f(x)<2x+2恒成立.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 3 |
| a-3 |
| 2 |
| x | 2 1 |
| x | 2 2 |
| x | 3 1 |
| x | 3 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| x |
| 1+x |
| 1 |
| 10 |
| 1 |
| 9 |
| 1 |
| 2 |
| 19 |
| 2 |
| 19 |
| 2 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| x |
| ||
1+
|
| x |
| 1+x |
| 1 |
| 1+x |
| x |
| 1+x |
| 1+x |
| 1+x |
| 1 | ||
2x+
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
| 1-x |
| 1 |
| 2 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| lim |
| n→∞ |
| 4Sn-9Sn |
| 4Sn+1+9Sn+1 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| x+1-a |
| a-x |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
| 1-x |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| sinα | ||
|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com