中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知四棱柱ABCD-A1B1C1D1中的底面是菱形,且∠DAB=∠A1AB=∠A1AD=60°,AD=1,AA1=a,F為棱BB的中點,M為線段AC的中點.設
AB
=
e1
AD
=
e2
AA1
=
e3
.試用向量法解下列問題:
(1)求證:直線MF∥平面ABCD;
(2)求證:直線MF⊥面A1ACC1
(3)是否存在a,使平面AFC1與平面ABCD所成二面角的平面角是30°?如果存在,求出相應的a 值,如果不存在,請說明理由.(提示:可設出兩面的交線)
分析:(1)由:|
e1
|=|
e2
|=1,|
e3
|=a,
e 1
e2
=
1
2
e1
e3
=
e2
e3
=
1
2
a
e1
e3
=
e2
e3
=
1
2
a
AC1
=
e1
+
e2
+
e3
AM
=
1
2
e1
+
e2
+
e3
),
AF
=
AB
+
BF
=
AB
+
1
2
AA1
=
e1
+
1
2
e3
MF
=
AF
-
AM
=
1
2
e1
-
e2
),
DB
=
AB
-
AD
=
e1
-
e2
=2
MF
,由此能證明直線MF∥平面ABCD.
(2)由
MF
AA1
=(
e1
-
e2
1
2
e3
=0,
MF
AC
=(
e1
-
e2
)(
e1
+
e2
+
e3
1
2
=0,知MF⊥AA1,MF⊥AC,AC和AA1是面ABCD內的相交直線,由此能證明直線MF⊥面A1ACC1
(3)設平面AFC1與平面ABCD的交線為c,兩平面有一個公共點A,故A在直線c上;MF在面AFC1內,直線MF∥平面ABCD,有MF∥直線c,由直線MF⊥面A1ACC1,直線AC和直線AC1在平面A1ACC1內,知平面AFC1與平面ABCD所成二面角的平面角是∠C1AC由此能推導出不存在這樣的a值,使平面AFC1與平面ABCD所成二面角的平面角是30°.
解答:(1)證明:|
e1
|=|
e2
|=1,
|
e3
|=a,
e 1
e2
=
1
2

e1
e3
=
e2
e3
=
1
2
a
,(2分)
AC1
=
e1
+
e2
+
e3

AM
=
1
2
e1
+
e2
+
e3
),
AF
=
AB
+
BF
=
AB
+
1
2
AA1
=
e1
+
1
2
e3

MF
=
AF
-
AM
=
1
2
e1
-
e2
),(3分)
DB
=
AB
-
AD
=
e1
-
e2
=2
MF

DB在面ABCD內,MF在面ABCD外,
∴直線MF∥平面ABCD;(4分)
(2)證明:
MF
AA1
=(
e1
-
e2
1
2
e3
=0,(5分)
MF
AC
=(
e1
-
e2
)•(
e1
+
e2
+
e3
1
2
=0,(6分)
∴MF⊥AA1,MF⊥AC,AC和AA1是面ABCD內的相交直線,
∴直線MF⊥面A1ACC1;(7分)
(3)解:設平面AFC1與平面ABCD的交線為c,兩平面有一個公共點A,
∴A在直線c上;MF在面AFC1內,直線MF∥平面ABCD,有MF∥直線c,
由2)知,直線MF⊥面A1ACC1,直線AC和直線AC1在平面A1ACC1內,
∴MF⊥AC1,MF⊥AC,因此,有AC1⊥直線c,AC⊥直線c,
平面AFC1與平面ABCD所成二面角的平面角是∠C1AC,(10分)
假設存在這樣的a,使∠C1AC=30°,
則cos30°=cos
AC 1
AC

=
    <menu id="wneng"></menu>
      AC1
      練習冊系列答案
      年級 高中課程 年級 初中課程
      高一 高一免費課程推薦! 初一 初一免費課程推薦!
      高二 高二免費課程推薦! 初二 初二免費課程推薦!
      高三 高三免費課程推薦! 初三 初三免費課程推薦!
      相關習題

      科目:高中數學 來源: 題型:

      已知四棱柱ABCD-A1B1C1D1中,側棱AA1⊥底面ABCD,AA1=2,底面四邊形ABCD的邊長均大于2,且∠DAB=45°,點P在底面ABCD內運動且在AB,AD上的射影分別為M,N,若|PA|=2,則三棱錐P-D1MN體積的最大值為(  )

      查看答案和解析>>

      科目:高中數學 來源: 題型:

      已知四棱柱ABCD-A1B1C1D1的底面是邊長為1的正方形,側棱垂直底邊ABCD四棱柱,AA1=2,E是側棱AA1的中點,求
      (1)求異面直線BD與B1E所成角的大小;
      (2)求四面體AB1D1C的體積.

      查看答案和解析>>

      科目:高中數學 來源: 題型:

      (2012•江門一模)如圖,已知四棱柱ABCD-A1B1C1D1的俯視圖是邊長為3的正方形,側視圖是長為3寬為
      3
      的矩形.
      (1)求該四棱柱的體積;
      (2)取DD1的中點E,證明:面BCE⊥面ADD1A1

      查看答案和解析>>

      科目:高中數學 來源: 題型:

      精英家教網如圖,已知四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=4,AA1=3,∠BAA1=60°,E為棱C1D1的中點,則
      AB
      AE
      =
       

      查看答案和解析>>
      <object id="wneng"><button id="wneng"></button></object>
      <dfn id="wneng"></dfn>
        <menuitem id="wneng"></menuitem>
        <menuitem id="wneng"></menuitem>