制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確保可能的資金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?
投資甲項目4萬元,乙項目6萬元.
解析試題分析:(1)含有實際背景的線性規(guī)劃問題其解題關鍵是找到制約求解目標的兩個變量,用這兩個變量建立可行域和目標函數(shù),解題時要注意題目中的各種制約的關系,列出全面的制約條件和正確的目標函數(shù);(2)平面區(qū)域的畫法:線定界、點定線(注意實虛線);(3)求最值:求二元一次函數(shù)
的最值,將函數(shù)
轉化為直線的點斜式
,通過求直線的截距
的最值間接求出
的最值,最優(yōu)解在頂點或邊界取得.
試題解析:解:設分別向甲、乙兩組項目投資
萬元,
萬元,利潤為
萬元
由題意知![]()
目標函數(shù)
作出可行域
作出可行域![]()
作直線
,并作平行直線
的一組直線![]()
,與可行域相交,其中有一條直線經(jīng)過可行域上的點
點,且與直線
的距離
最大,這里
是直線
和![]()
解方程組
,解得![]()
此時
(萬元)![]()
當
時
最大
答:投資人投資甲項目4萬元,乙項目6萬元,獲得利潤最大
考點:利用線性規(guī)劃求目標函數(shù)的最值.
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù)f(x)滿足:①當x=1時有極值;②圖象與y軸交點的縱坐標為﹣3,且在該點處的切線與直線x=2y﹣4垂直.
(1)求f(1)的值;
(2)若函數(shù)g(x)=f(lnx),x∈(1,+∞)上任意一點處的切線斜率恒大于a2﹣a﹣2,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設二次函數(shù)
.
(1)求函數(shù)
的最小值;
(2)問是否存在這樣的正數(shù)
,當
時,
,且
的值域為
?若存在,求出所有的
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某房地產(chǎn)開發(fā)公司計劃在一樓區(qū)內(nèi)建造一個長方形公園ABCD,公園由長方形休閑區(qū)A1B1C1D1和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000m2,人行道的寬分別為4m和10m(如圖所示).
(1)若設休閑區(qū)的長和寬的比
,求公園ABCD所占面積S關于x的函數(shù)解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長和寬應如何設計?![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com