中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
有甲、乙兩個工廠,甲廠位于一直線河岸的岸邊A處,乙廠與甲廠在河的兩側,乙廠位于離河岸40km的B處,乙廠到河岸的垂足D與A相距50km,兩廠要在此岸邊合建一個供水站C,從供水站到甲廠和乙廠的水管費用分別為3a元和5a元,問供水站C建在何處才能使水管費用最省?
據題意知,只有點C在線段AD上某一適當位置,才能使總運費最省,
設C點距D點xkm,如圖所示,則BD=40,AC=50-x,
∴BC=
BD2+CD2
=
402+x2
又設總的水管費用為y元,
由題意得y=3a(50-x)+5a
x2+402
(0<x<50),
y′=-3a+
5ax
x2+402
令y′=0解得x=30.
在(0,50)上,y只有一個極值點,
根據實際意義,函數在x=30(km)處取得最小值,
此時AC=50-x=20(km),
答:供水站C建立在A、D之間距甲廠20km處,可使水管費用最省.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

某廠生產產品x件的總成本c(x)=
1
12
x3
(萬元),已知產品單價P(萬元)與產品件數x滿足:P2=
k
x
,生產1件這樣的產品單價為16萬元.
(1)設產量為x件時,總利潤為L(x)(萬元),求L(x)的解析式;
(2)產量x定為多少件時總利潤L(x)(萬元)最大?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知一塊半徑為r的殘缺的半圓形材料ABC,O為半圓的圓心,OC=
1
2
r
,殘缺部分位于過點C的豎直線的右側.現要在這塊材料上截出一個直角三角形,有兩種設計方案:如圖甲,以BC為斜邊;如圖乙,直角頂點E在線段OC上,且另一個頂點D在
AB
上.要使截出的直角三角形的面積最大,應該選擇哪一種方案?請說明理由,并求出截得直角三角形面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=-x3+x2+b,g(x)=alnx.
(1)若f(x)在x∈[-
1
2
,1)
上的最大值為
3
8
,求實數b的值;
(2)若對任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求實數a的取值范圍;
(3)在(1)的條件下,設F(x)=
f(x),x<1
g(x),x≥1
,對任意給定的正實數a,曲線y=F(x)上是否存在兩點P、Q,使得△POQ是以O(O為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=alnx+x2(a為實常數).
(1)當a=-4時,求函數f(x)在[1,e]上的最大值及相應的x值;
(2)當x∈[1,e]時,討論方程f(x)=0根的個數.
(3)若a>0,且對任意的x1,x2∈[1,e],都有|f(x1)-f(x2)|≤|
1
x1
-
1
x2
|
,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若a1x≤sinx≤a2x對任意的x∈[0,
π
2
]
都成立,則a2-a1的最小值為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x2+xsinx+cosx.
(1)求f(x)的最小值;
(2)若曲線y=f(x)在點(a,f(a))處與直線y=b相切,求a與b的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數f(x)=x2+
2
x
,g(x)=(
1
2
)x+m
,若?x1∈[1,2],?x2∈[-1,1],使得f(x1)≥g(x2),則實數m的取值范圍是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

,則的大小關系為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案